• Title/Summary/Keyword: Acetate kinase

Search Result 187, Processing Time 0.027 seconds

The Role of Protein Kinase C for Prolactin Secretion in Chicken Primary Pituitary Cell Culture (산란계의 뇌하수체 세포배양에서 Prolactin의 생성에 관계하는 Protein Kinase C의 역할)

  • 선상수
    • Korean Journal of Poultry Science
    • /
    • v.23 no.3
    • /
    • pp.113-119
    • /
    • 1996
  • A series of experiments were conducted to investigate the role of protein kinase C (PKC) as a second messenger in vasoactive intestinal peptide (VIP) mediated prolactin secretion. Primary pituitary cells (106 cells/treatment) were separated from laying hens and incubated in M-199 with 5% chicken serum and 5% fetal calf serum. The VIP(0.1 $\pi$M) treatment enhanced prolactin Secretion into media upto 9-fold during 48-h incubation. The phorbol 12-myristate 13-acetate (PMA), a PKG agonist, increased prolactin secretion upto 2-fold at 0.1 nM PMA (P<0.01), and the prolactin secretion was not significantly higher than this concentration. Staurosporine (ST; 1.0$\pi$M) a PKC antagonist, decreased by 70% of 0.1 $\pi$M VIP-stimulated prolactin secretion and by 48% of 10 ${\mu}$M PMA-stimulated prolactin secretion (P<0.01). However, pituitary cell prolactin content did not differ in any treatment (P>0.05). In conclusion, these results indicate that the PKC second messenger system is involved in VIP-stimulated prolactin release in chicken primary pituitary cell culture.

  • PDF

Ginsenosides Promote Proliferation of Cultured Ovarian Germ Cells Involving Protein Kinase C-mediated System in Embryonic Chickens

  • Liu, Hongyun;Zhang, Caiqiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.958-963
    • /
    • 2006
  • The effect of ginsenosides (GS) on germ cell proliferation was evaluated with a chicken ovarian germ-somatic cell coculture model and the mechanism involving protein kinase C (PKC) pathway was investigated. Ovarian cells were cultured in serum-free McCoy's 5A medium and challenged with GS alone or in combinations with PKC activator (phorbol 12-myristate 13-acetate, PMA) or inhibitor ($H_7$) for 48 h. The number of germ cells was counted and the proliferating cells were identified by immunocytochemistry of proliferating cell nuclear antigen (PCNA). Results showed that GS significantly increased germ cell proliferation and this stimulating effect was further increased by PMA, but inhibited by H7, in a dose-dependent manner. Moreover, GS-elevated PCNA expression and the PCNA -labeling index of germ cells displayed similar changes with the increased numbers of germ cells. These results indicated that GS stimulated proliferation of ovarian germ cells with involvement of the PKC-mediated system.

Protein Kinase C (PKC) in Cellular Signalling System: Translocation of Six Protein Kinase C Isozymes in Human Prostate Adenocarcinoma PC-3 Cell Line (세포신호계에 있어서 Protein Kinase C: 사람의 전입선 adenocarcinoma PC-3 세포내의 여섯개의 Protein kinase C 동립효소의 translocation)

  • Park, Won-Chul;Ahn, Chang-Ho
    • The Korean Journal of Zoology
    • /
    • v.36 no.4
    • /
    • pp.439-451
    • /
    • 1993
  • Protein kinase C isozymes in a human prostate adenocarcinoma PC-3 cell line were characterized. Immunoreactive bands and immunocytochemical stains were obsenred in PC-3 cells with antibodies raised against protein kinase C ${\alpha}$, ${\beta}$, ${\gamma}$, $\delta$, $\varepsilon$, and ζ types, respectively. Protein kinase C ${\alpha}$ corresponded to a immunoreactive band at a molecular weight of 80,000-dalton, whereas molecular weights of other immunoreactive isozvmes of protein kinase C were detected at 68,000-dalton. Protein kinHse C $\delta$ and ζ antibodies detected additional bands at 55,000-dalton and 80,000-dalton, respectively Immunocvtochemical study confirmed the results of the immunoblotting experiments qualitatively: all six protein kinase C isozymes were detected in the cytoplasm of PC-3 cells. Translocation of protein kinase C in PC-3 cells were also examined with phorbol 12-myristate 13-acetate (PMA), bryostatin 2, diolein, and 1-oleoyl-2-acetyl glycerol (OAG). Differential reactions of protein kinase C isozvmes to these activators were obsenred. When PC-3 cells were treated with 10mM bryostatin 2, protein kinase C isozyme u was translocated into the nucleus, whereas s type was translocated into the plasma membrane and the nucleus. Protein kinase C ${\alpha}$ and ζ types were translocated into the nucleus following the treatment with 101M diolein, whereas protein kinase C ${\alpha}$, ${\beta}$, ${\gamma}$, and $\varepsilon$ types were translocated into the nucleus by the treatment with 10mM OAG. Protein kinase C ${\alpha}$ and $\varepsilon$ types were translocated into the nucleus in the presence of 100nM PMA. Protein kinase C $\delta$ type was translocated to the nuclear membrane by these activators, however, only PMA-induced translocation was inhibited by protein kinase C inhibitor, 1-(5-isoquinolinesulfonyll-2-methvlpiperazine dihvdrochloride (H7) . H7 inhibited translocation of protein kinase C ${\alpha}$ type induced by PMA, ${\beta}$ type by OAG and s type by PMA and OAG, whereas it did not affect translocations induced by bryostatin and diolein, respectively. These results suggest that there exist six isoformes of protein kinase C (${\alpha}$, ${\beta}$, ${\gamma}$, $\delta$, $\varepsilon$ and ζ types) in PC-3 cells and that each of these isozvmes distinctivelv reacts to bryostatin, diolein, OAG and PMA, in part due to an altered molecular size and conceivably discrete binding site(s).

  • PDF

Comparison of Bradykinin- and Platelet-Derived Growth Factor-Induced Phosphoinositide Turnover in NIH 3T3 Cells

  • Lee, Kee-Ho;Ryu, Yong-Wun;Yoo, Young-Do;Bai, Dong-Hoon;Yu, Ju-Hyun;Kim, Chang-Min
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.549-554
    • /
    • 1996
  • Phosphoinositide turnover in response to platelet-derived growth factor, epidermal growth factor, and bradykinin was evaluated in NIH 3T3 cells. Platelet-derived growth factor and bradykinin induced a significant increase in incorporation of $^{32}P$ into phosphatidylinositol (PI), phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol 4.5-bisphosphate ($PIP_2$) in serum-starved NIH 3T3 cells. However, epidermal growth factor increased incorporation of $^{32}P$ into these phosphoinositides by only a small amount. Stimulation with platelet-derived growth factor, not bradykinin, caused a rapid elevation of PI and PIP kinase activities that were maximally activated within 10 min. The maximal levels of their elevation in cells with plateletderived growth factor stimulation were 3.2-fold for PI kinase, and 2.1-fold for PIP kinase. Short term pretreatment of NIH 3T3 cells with phorbol 12-myristate 13-acetate, activator of protein kinase C. caused an approximately 60% decrease in platelet-derived growth factor-induced PI kinase activities, indicating the feedback regulation of phosphoinositide turnover by protein kinase C. These results suggest that although the enhancement of phosphoinositide turnover is a rapidly occurring response in platelet-derived growth factor- or bradykinin-stimulated NIH 3T3 cells, phosphoinositide kinases may be associated with initial signal transduction pathway relevant to platelet-derived growth factor but not to bradykinin.

  • PDF

MOLECULAR BREEDING OF GLUTATHIONE PRODUCING BACTERIAL STRAINS

  • Nam Yong-Suk;Lee Se Yong
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 1991.04a
    • /
    • pp.237-242
    • /
    • 1991
  • In order to increase the production of glutathione by maximizing the expression of recombinant gsh plasmids, two genes responsible for the biosynthesis of glutathione were cloned. A gshI gene was cloned onto pBR322 plasmid as 3.6Kb PstI DNA fragment from E. coli K-12 chromosomal DNA. Also gshII gene was cloned onto pUC13 plasmid as 2.2Kb PstI-BamHI DNA fragment. In order to improve the glutathione producing activity more efficiently, various recombinant plasmids containing tandem repeated gshI genes or both genes in various copy number onto the same vector were constructed. E. coli cells harboring pGH501 plasmid (pUC8-gshI$\cdot$I$\cdot$II) showed the highest glutathione synthesizing activity. The conditions for glutathione production with an ATP-generating system such as acetate kinase reaction of E. coli cells or glycolytic pathway of yeast cells were examined using the E. coli cells harboring the pGH501 plasmid. When the acetate kinase reaction of E. coli cells was used as an ATP generating system, 20mM of L-csteine was converted into glutathione with a yield of $100\%$.

  • PDF

Effect of Various Factors on Early THP-1 Cell Adhesion Induced Phorbol 12-Myristate 13-Acetate (PMA) (Phorbol 12-myristate 13-acetate (PMA) 처리로 유도되는 THP-1 세포의 초기 부착에 관한 다양한 인자의 효과)

  • Jo, Yong-Sam;Shin, Ji-Hyun;Choi, Tae-Saeng
    • Journal of Life Science
    • /
    • v.18 no.7
    • /
    • pp.952-957
    • /
    • 2008
  • We evaluated the effects of various factors (e.g., serum, inhibitors of protein synthesis, and cytoskeleton and protein kinases) on early PMA-induced THP-1 cell adhesion using an adhesion assay with Sulforhodamine B (SRB) staining, which was used to assess the proliferation of the attached cells. THP-1 cell adhesion to a plastic substrate was detected 1 hr after exposure to Phorbol 12-Myristate 13-Acetate (PMA) and peaked after 18 hr. At concentrations > 25 nM PMA, the level of adhesion did not change. Based on our preliminary results, we used 25 nM PMA and 5 hr of culture as standard assay conditions. Early PMA-induced cell adhesion was not affected by the presence of serum or PD 98059 in the culture medium, but was affected by the addition of PKC inhibitors and cycloheximide. In the presence of actin inhibitor with PMA, the cell adhesion increased when comparing with PMA treatment only. Thus, early PMA-induced adhesion of THP-1 cells does not require serum in the culture medium, MAP-kinase activation, or actin polymerization, but does require de novo protein synthesis and PKC activation. Our SRB-based cell adhesion assay may be used to screen other PKC inhibitors.

Effects of activation of protein kinase C on the regulation of atrial natriuretic peptide(ANP) by isolated perfused left atria (백서의 심방관류모델에서 protein kinase C의 활성화가 atrial natriuretic peptide(ANP) 조절에 미치는 영향)

  • Kang, Chang-won;Kang, Hyung-sub;Lee, Ho-il
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.4
    • /
    • pp.735-744
    • /
    • 1997
  • 심방근 세포는 심방이뇨호르몬을 합성, 저장 그리고 분비하며, 세포내외 이온의 농도, 수분균형 및 혈압 등을 조절하는 것으로 알려져 있다. 또한 심방근의 인장자극에는 Atrial Natriuretic Peptide(ANP)를 2단계(분비, 유리)의 과정으로 이루어져 있으며, 이에 따른 심방이뇨호르몬의 분비 조절기전에 대하여서는 명확히 알려져 있지 않다. 따라서 본 연구는 백서의 심방근 적출관류 모델을 이용하여 protein kinase C와 ANP 조절의 상관관계를 밝히고 분비와 유리의 과정중 어떠한 과정을 이용하여 분비자극에 영향을 주는지를 관찰하기 위하여 본 실험을 실시하였다. PKC 활성제인 PMA(phorbol 12-mystrate 13-acetate)는 ANP의 유리를 현저하게 증가시켰으며, PKC 억제제인 H-7(1-(5-isoquinoline sulfonyl)-2-methyl piperazine dihydrochlo-ride)에 의해 유리를 억제시켰다. PMA와 H-7을 동시에 처리한 경우 PMA에 의하여 증가된 ANP의 유리가 H-7에 의하여 차단됨을 관찰할 수 있었다. 따라서 백서의 관류 심방에서의 ANP 분비 증가는 PKC 활성화에 의하여 이루어지며, ANP분비의 2단계중 ANP 유리에 영향을 줌을 알 수 있었다.

  • PDF

Studies on the Differentiation of Skeletal Muscle Cells in uitro : The Phosphorylation and Down Regulation of Protein Kinase C in Myoblasts of Chick Embryos (근세포 분화에 관한 연구 계배의 Myoblasts에 있어서 Protein Kinase C (PKC)의 인 산화작용과 Down Regulation)

  • 문현근;최원철
    • The Korean Journal of Zoology
    • /
    • v.35 no.2
    • /
    • pp.161-172
    • /
    • 1992
  • In the short-term treahent of 12-0-tetradecanoylphorbol-13-acetate (TPA) or platelet-derived growth factor (PDGF), the'Wh and PDGF induced the Protein Kinase C (PKC) activation and migration from the cytoplasm to the peripheral nulcear membrane. And the activated PKC which was directly or indirectly stimulated by TPA or PDGF Phosphorylated many kinds of PKC's targeting proteins and induces various biological responses. Especially, the cytoplasmic PKC was phosphorylated within 1 hr and 10 min by TPA-and PDGF-treahent respectivelv. In the long-term treatment of TPA or PDGF, both of them induced the down-regulation and translocation of PKC in the mvoblasts. The down-regulation of PKC isozyrnes, the pattern of PKC I and ll was similar to the PKC 111 isozpnes in the cytoplasm. But in the nucleolus, the TPA did not induce and down-regulation or the inhibition of the immunoreactivity of PKC III antibody. This investigation indicates that each isozvmes of PKC mal be performed the different effects to the down-regulation of the cytoplasm or nucleolus. And douvn-regulated myoblasts contained low immunoreactivity of PKC antibodies.

  • PDF

Isoforms of Protei,n Kinase C during the Differentiation of Chick Limb Mesenchvme (계배 간충직세포 분화과정에서의 Protein Kinase C Isoform들의 변화)

  • 손종경;강신성
    • The Korean Journal of Zoology
    • /
    • v.38 no.2
    • /
    • pp.286-293
    • /
    • 1995
  • The present studies were undertaken to examine the activitites of PKC isoforms in cultures of chick limb mesenchvme. Micromass cultures were prepared using wing buds of stage 23/24 (Hamburger and Hamilton, 19511 chick embryo. The cells were homogenized and DEAE-cellulose column chromatography was performed to get fraction containing protein kinase C (PKC) activity. PKC isoforms were resolved with hvdroxyapatitie column chromatography. Profile of PKC isoforms of cultures were compared with that of rat brain. Activity of $PKC-\beta$ isoform was appeared at the early stage of chondrogenesis. On 3 daw of culture, activities of both PKC a and $\beta$ were observed with remarkable increase but no activity of y isoform was appeared. Treatment of phorbol-12-mvristate-13-acetate (PMA) (10-7 M) to the culture inhibited chondrosenesis and down-regulated a and $\beta$ isoforms. Staurosporine promoted chondro!genesis without any effect on PKC isioforms profile. These data indicate that PKC a and $\beta,$ especiallv $\beta$ isoform is related to chondrosenesis and the promoting effect of staurosporine on chondrogenesis is not related to PKC isoforms activities.

  • PDF

Protein kinase C-mediated Stimulatory Effect of $Ginsenoside-{Rg_1}$ on the Proliferation of SK-HEP-1 (SK-HEP-1 사람 간세포에서 Protein kinase C 신호전달체계를 통한 $인삼사포닌-{Rg_1}$의 DNA 합성 촉진 효과)

  • 공희진;이광열;정은아;이유희;김신일;이승기
    • YAKHAK HOEJI
    • /
    • v.39 no.6
    • /
    • pp.661-665
    • /
    • 1995
  • Ginsenoside-Rg$_{1}$(G-Rg$_{1}$) has been shown to stimulate DNA synthetic activity in SK-HEP-1 cells. This study was therefore designed to determine in SK-HEP-1 cells whether the stimulatory effect of G-Rg$_{1}$ may be mediated by protein kinase C (PKC) which is known to play a key role in the signal transduction pathway leading to the cell proliferation. Using the tn situ PKC assay method, the PKC enzyme activity was determined in SK-HEP-1 cell cultures in response to G-Rg$_{1}$ at 3*10$^{-5}$ M or phorbol 12-myristate 13-acetate(PMA) at 10$^{-6}$ M which in the enzyme activity by 1.5- and 7-fold, respectively. Furthermore, G-Rg$_{1}$, was also able to synergistically increase the enzyme activity by 11-fold m the cell cultures in the presence of PMA. These stimulatory effects of G-Rg$_{1}$ or PMA on the DNA synthetic activity and the PKC activity were ablished by a specific PKC inhibitor, GF109203X. These results suggest that the stimulatory effect of G-Rg$_{1}$ on the DNA synthetic activity may be partly due to stimulation of PKC-mediated signal transduction pathway leading to the proliferation of SK-HEP-1 cells.

  • PDF