• 제목/요약/키워드: Acetyl phosphate

검색결과 52건 처리시간 0.022초

Two-component Signal Transduction in Synechocystis sp. PCC 6803 under Phosphate Limitation: Role of Acetyl Phosphate

  • Juntarajumnong, Waraporn;Eaton-Rye, Julian J.;Incharoensakdi, Aran
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.708-714
    • /
    • 2007
  • The two-component signal transduction, which typically consists of a histidine kinase and a response regulator, is used by bacterial cells to sense changes in their environment. Previously, the SphS-SphR histidine kinase and response regulator pair of phosphate sensing signal transduction has been identified in Synechocystis sp. PCC 6803. In addition, some response regulators in bacteria have been shown to be cross regulated by low molecular weight phosphorylated compounds in the absence of the cognate histidine kinase. The ability of an endogenous acetyl phosphate to phosphorylate the response regulator, SphR in the absence of the cognate histidine kinase, SphS was therefore tested in Synechocystis sp. PCC 6803. The mutant lacking functional SphS and acetate kinase showed no detectable alkaline phosphatase activity under phosphate-limiting growth conditions. The results suggested that the endogenous acetyl phosphate accumulated inside the mutants could not activate the SphR via phosphorylation. On the other hand, exogenous acetyl phosphate could allow the mutant lacking functional acetate kinase and phosphotransacetylase to grow under phosphate-limiting conditions suggesting the role of acetyl phosphate as an energy source. Reverse transcription PCR demonstrated that the transcripts of acetate kinase and phospho-transacetylase genes in Synechocystis sp. PCC 6803 is up-regulated in response to phosphate limitation suggesting the importance of these two enzymes for energy metabolism in Synechocystis cells

Metabolic Routes of Malonate in Pseudomonas fluorescens and Acinetobacter calcoaceticus

  • Byun, Hye-Sin;Kim, Yu-Sam
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.107-111
    • /
    • 1995
  • In malonate grown Pseudomonas fluorescens, malonate decarboxylase and acetyl-CoA synthetase were induced, whereas in Acinetobacter calcoaceticus malonate decarboxylase, acetate kinase, and phosphate acetyltransferase were induced. In both bacteria malonate decarboxylase was the first, key enzyme catalyzing the decarboxylation of malonate to acetate, and it was localized in the periplasmic space. Acetate thus formed was metabolized to acetyl-CoA directly by acetyl-CoA synthetase in Pseudomonas, and to acetyl-CoA via acetyl phosphate by acetate kinase and phosphate acetyltransferase in Acinetobacter.

  • PDF

Isolation and Properties of $\beta$-N-Acetyl-D-glucosaminidase B from Rat Uterus

  • Jung, Jin-Ha;Yang, Chul-Hak
    • Bulletin of the Korean Chemical Society
    • /
    • 제4권3호
    • /
    • pp.139-143
    • /
    • 1983
  • ${\beta}$-N-Acetyl-D-glucosaminidase B was highly purified with the following sequence of steps; DEAE-cellulose, CM-cellulose, and Sephadex G-200 gel filtration chromatograpies. The specific activity of the purified ${\beta}$ -N-acetyl-D-glucosaminidase B was 2.2 units/mg protein with 12.9 % yield and 196.2 fold purity. The purified ${\beta}$-N-acetyl-D-glucosaminidase B showed single band on polyacrylamide gel electrophoresis. The final preparation of ${\beta}$ -N-acetyl-D-glucosaminidase B was completely free friom arylsulfatase and ${\beta}$-glucuronidase. ${\beta}$ -N-Acetyl-D-glucosaminidase B had pH optimum of 4.5 in 0.5 M sodium citrate buffer. The molecular weight of ${\beta}$-N-acetyl-D-glucosaminidase B was 133,000 by Sephadex G-200 gel filtration. The Km value of ${\beta}$-N-acetyl-D-glucosaminidase B using p-nitrophenyl-N-acetyl-${\beta}$-D-glucosaminide as substrate was 1.0 mM and $V_{max}$ was 0.014 ${\mu}$ mole/min. ${\beta}$-N-Acetyl-D-glucosaminidase B was stable at $55^{circ}C$ for 70 minutes. The crude ${\beta}$ -N-acetyl-D-glucosamiinidase in 70 % ammonium sulfate retained 93 % activity after 7 months storage at -$55^{circ}C$. Bovine serum albumin, sodium chloride, and phosphate activated ${\beta}$ -N-Acetyl-D-glucosaminidase B. N-Acetyl-D-glucosamine, ${\alpha}$-methyl-D-mannoside, and acetate inhibited ${\beta}$ -N-acetyl-D-glucosaminidase B.

Enzymatic Manufacture of Deoxythymidine-5'-Triphosphate with Permeable Intact Cells of E. coli Coexpressing Thymidylate Kinase and Acetate Kinase

  • Zhang, Jiao;Qian, Yahui;Ding, Qingbao;Ou, Ling
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권12호
    • /
    • pp.2034-2042
    • /
    • 2015
  • A one-pot process of enzymatic synthesis of deoxythymidine-5'-triphosphate (5'-dTTP) employing whole cells of recombinant Escherichia coli coexpressing thymidylate kinase (TMKase) and acetate kinase (ACKase) was developed. Genes tmk and ack from E. coli were cloned and inserted into pET28a(+), and then transduced into E. coli BL21 (DE3) to form recombinant strain pTA in which TMKase and ACKase were simultaneously overexpressed. It was found that the relative residual specific activities of TMKase and ACKase, in pTA pretreated with 20 mM ethylene diamine tetraacetic acid (EDTA) at 25℃ for 30 min, were 94% and 96%, respectively. The yield of 5'-dTTP reached above 94% from 5 mM deoxythymidine 5'-monophosphate (5'-dTMP) and 15 mM acetyl phosphate catalyzed with intact cells of pTA pretreated with EDTA. The process was so effective that only 0.125 mM adenosine-5'-triphosphate was sufficient to deliver the phosphate group from acetyl phosphate to dTMP and dTDP.

Bacillus subtilus HR-1019와 N-Acetyl-thioproline으로 제조한 미생물처리제, BIOACTIVE에 의한 상추의 생장 촉진 (Growth Promotion of Lettuce by Biofertilizer, BIOACTIVE, Prepared from Bacillus subtilus HR-1019 and N-acetyl-thioproline)

  • 이용석;박동주;김재훈;김형석;정수열;최용락
    • 생명과학회지
    • /
    • 제23권1호
    • /
    • pp.79-83
    • /
    • 2013
  • L-Cysteine에서 유도된 아미노산인 ATCA와 불용성 인산 가용화능을 가진 균주를 이용하여 미생물처리제 BIOACTIVE를 제조하고 안정성을 확인 하였다. 제조한 미생물처리제를 미생물 비료로 적용하고자 3회 관주 처리한 다음 상추모종의 생장촉진 효과를 조사하는 실험을 수행하였다. 그 결과로 처리한 시험 구에서 상추의 생육은 엽수, 엽장 및 엽중에서 최대 128%, 122% 및 153% 정도로 증가하였다. 처리 간에는 기준량(1,000배 희석) 처리> 반 량(500배 희석) 처리> 배 량(2,000배 희석) 처리 순으로 나타났다. 공시 BIOACTIVE의 처리가 토양 중의 유효인산 및 식물체내의 인산함량을 최대 118% 및 132% 정도 증가 시키는 경향이었다. BIOACTIVE제제를 처리했을 때 N, P, K 3요소를 관행으로 처리와 비슷한 생육 효과가 있는 것으로 보아 복합비료의 사용량을 줄여, 재배가 충분히 가능하리라 생각되며, 상추의 생육 및 비해 조사를 한 결과 본 관주 처리에서는 생육장해 및 비해는 없었다.

Properties of Acetyl-CoA Synthetase from Pseudomonas fluorescens

  • Kim, Yu-Sam;An, Jae-Hyung;Yang, Bu-Hyun;Kim, Kyu-Wan
    • BMB Reports
    • /
    • 제29권4호
    • /
    • pp.277-285
    • /
    • 1996
  • In Pseudomonas fluorescens grown on malonate as sole carbon source, acetyl-CoA synthetase was induced, suggesting that malonate is metabolized through acetate and then acetyl-CoA. Acetyl-CoA synthetase was purified 18.6-fold in 4 steps to apparent homogeneity. The native molecular mass of the enzyme estimated by a native acrylamide gel electrophoresis was 130 kDa. The enzyme was composed of two identical subunits with a molecular mass of 67 kDa. Optimum pH was 70. The acetyl-CoA synthetase showed typical Michaelis-Menten kinetics for the substrates, acetate, ATP and CoA, whose $K_m$ values were calculated to be 33.4, 74.8, and 40.7 mM respectively. Propionate. butyrate and pentanoate were also used as substrates by the enzyme, but the rate of the formation of the CoA derivatives was decreased in the order of the increase in carbon number. The enzyme was inhibited by the group-specific reagents diethylpyro-carbonate, 2,3-butanedione, pyridoxal-5'-phosphate and N-bromosuccinimide. In the presence of substrates the inactivation rate of the enzyme, by all of the group-specific reagents mentioned above decreased, indicating the presence of catalytically essential histidine, arginine, lysine and tryptophan residues at or near the active site. Preincubation of the enzyme with ATP, $Mg^{2+}$ resulted in the increase of its susceptibility to diethylpyrocarbonate, suggesting that ATP, $Mg^{2+}$ may induce a conformational change in the active site exposing the essential histidine residue to diethylpyrocarbonate. The enzyme was acetylated in the presence of acetyl-CoA, indicating that this is one of acyl-enzyme.

  • PDF

Pseudomonas sp. CL-1 및 Kluyvera sp. CL-2 균주의 인산가용화 특성 (Phosphate Solubilizing Activity of Pseudomonas sp. CL-1 and Kluyvera sp. CL-2)

  • 권장식;서장선;원항연;김완규;노형준
    • 한국토양비료학회지
    • /
    • 제40권6호
    • /
    • pp.442-446
    • /
    • 2007
  • 토양에 고정되어 축적된 난용성 인산염을 가용화하는 유용세균을 선발하여 생물비료로 이용하고자 고추, 토마토, 상추, 오이, 목초, 잔디의 근권토양 및 뿌리표면에서 인산가용화능이 있는 세균을 분리하였다. 선발된 인산가용화균은 16S rRNA 염기서열과 생화학적특성 등에 의해 동정되었으며, 난용성인산 가용화기능이 우수한 세균 Pseudomonas sp. CL-1 및 Kluyvera sp. CL-2균주를 선발하였다. Pseudomonas sp. CL-1균주는 esculin과 gelatin, casein을 가수분해하였고, 그리고 glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine, gluconate, caprate, adipate, malate, citrate 등을 이용하였다. Kluyvera sp. CL-2 균주는 esculin과 CM-cellulose를 가수분해 하였고 acetoin을 생성하였다. 그리고 glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine, maltose, gluconate, malate, citrate 등을 이용하였다. Pikovskaya's medium에서 선발균주의 난용성인산 $Ca_3(PO_4)_2$의 인 가용화량을 정량한 결과 Pseudomonas sp. CL-1과 Kluyvera sp. CL-2 균주는 접종후 1일, 3일에 각각 148.0, $193.4(P\;mg\;L^{-1})$와 482.8 mg, 493.6 mg의 인 가용화량을 나타내었다

Effects of Insulin and IGFs on Phosphate Uptake in Primary Cultured Rabbit Renal Proximal Tubule Cells

  • Han, Ho-Jae;Park, Kwon-Moo
    • The Korean Journal of Physiology
    • /
    • 제30권1호
    • /
    • pp.63-76
    • /
    • 1996
  • The aim of present study was to characterize phosphate uptake and to investigate the mechanism for the insulin and insulin-like growth factor(IGF) stimulation of phosphate uptake in primary cultured rabbit renal proximal tubule cells. Results were as follows : 1. The primary cultured proximal tubule cells had accumulated $6.68{\pm}0.70$ nmole phosphate/mg protein in the presence of 140 mM NaCl and $2.07{\pm}0.17$ nmole phosphate/mg protein in the presence of 140 mM KCl during a 60 minute uptake period. Raising the concentration of extracellular phosphate to 100 mM$(48.33{\pm}1.76\;pmole/mg\;protein/min)$ induced decrease in phosphate uptake compared with that in control cells maintained in 1 mM phosphate$(190.66{\pm}13.01\;pmole/mg\;protein/min)$. Optimal phosphate uptake was observed at pH 6.5 in the presence of 140 mM NaCl. Phosphate uptake at pH 7.2 and pH 7.9 decreased to $83.06{\pm}5.75%\;and\;74.61{\pm}3.29%$ of that of pH 6.5, respectively. 2. Phosphate uptake was inhibited by iodoacetic acid(IAA) or valinomycin treatment $(62.41{\pm}4.40%\;and\;12.80{\pm}1.64%\;of\;that\;of\;control,\;respectively)$. When IAA and valinomycin were added together, phosphate uptake was inhibited to $8.04{\pm}0.61%$ of that of control. Phosphate uptake by the primary proximal tubule cells was significantly reduced by ouabain treatment$(80.27{\pm}6.96%\;of\;that\;of\;control)$. Inhibition of protein and/or RNA synthesis by either cycloheximide or actinomycin D markedly attenuated phosphate uptake. 3. Extracellular CAMP and phorbol 12-myristate 13 acetate(PMA) decreased phosphate uptake in a dose-dependent manner in all experimental conditions. Treatment of cells with pertussis toxin or cholera toxin inhibited phosphate uptake. cAMP concentration between $10^{-6}\;M\;and\;10^{-4}\;M$ significantly inhibited phosphate uptake. Phosphate uptake was blocked to about 25% of that of control at 100 ng/ml PMA. 3-Isobutyl-1-methyl-xanthine(IBMX) inhibited phosphate uptake. However, in the presence of IBMX, the inhibitory effect of exogenous cAMP was not significantly potentiated. Forskolin decreased phosphate transport. Acetylsalicylic acid did not inhibit phosphate uptake. The 1,2-dioctanoyl-sn-glycorol(DAG) and 1-oleoyl-2-acetyl-sn- glycerol(OAG) showed a inhibitory effect. However, staurosporine had no effect on phosphate uptake. When PMA and staurosporine were treated together, inhibition of phosphate uptake was not observed. In conclusion, phosphate uptake is stimulated by high sodium and low phosphate and pH 6.5 in the culture medium. Membrane potential and intracellular energy levels are also an important factor fer phosphate transport. Insulin and IGF-I stimulate phosphate uptake through a mechanisms that involve do novo protein and/or RNA synthesis and decrease of intracellular cAMP level. Also protein kinase C(PKC) is may play a regulatory role in transducing the insulin and IGF-I signal for phosphate transport in primary cultured proximal tubule cells.

  • PDF

Control of Acetate Production Rate in Escherichia coli by Regulating Expression of Single-Copy pta Using $lacI^Q$ in Multicopy Plasmid

  • Lee, Sun-Gu;Liao, James C
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.334-337
    • /
    • 2008
  • A tightly regulated gene expression system composed of a single-copy target gene under the control of a lac promoter derivative and lacI gene in a multicopy plasmid is proposed, and its ability to control the flux of a metabolic pathway is demonstrated. A model system to control the flux of acetyl-CoA to acetyl phosphate was constructed by integrating pta, a gene encoding phosphotransacetylase, under a tac promoter into the chromosome of E. coli with a pta-negative background and transforming a multicopy plasmid containing the $lacI^Q$ gene into the strain. The production rate of acetate was shown to be tightly controlled when varying the concentration of the inducer (IPTG) in he model system.

Replacement of the antifreeze-like domain of human N-acetylneuraminic acid phosphate synthase with the mouse antifreeze-like domain impacts both N-acetylneuraminic acid 9-phosphate synthase and 2-keto-3-deoxy-D-glycero-Dgalacto- nonulosonic acid 9-phosphate synthase activities

  • Reaves, Marshall Louis;Lopez, Linda Carolyn;Daskalova, Sasha Milcheva
    • BMB Reports
    • /
    • 제41권1호
    • /
    • pp.72-78
    • /
    • 2008
  • Human NeuNAc-9-P synthase is a two-domain protein with ability to synthesize both NeuNAc-9-P and KDN-9-P. Its mouse counterpart differs by only 20 out of 359 amino acids but does not produce KDN-9-P. By replacing the AFL domain of the human NeuNAc-9-P synthase which accommodates 12 of these differences, with the mouse AFL domain we examined its importance for the secondary KDN-9-P synthetic activity. The chimeric protein retained almost half of the ability of the human enzyme for KDN-9-P synthesis while the NeuNAc-9-P production was reduced to less than 10%. Data from the homology modeling and the effect of divalent ions and temperature on the enzyme activities suggest conformational differences between the human and mouse AFL domains that alter the shape of the cavity accommodating the substrates. Therefore, although the AFL domain itself does not define the ability of the human enzyme for KDN-9-P synthesis, it is important for both activities by aiding optimal positioning of the substrates.