• Title/Summary/Keyword: Acidovorax avenae subsp. avenae

Search Result 12, Processing Time 0.028 seconds

Current Status of Bacterial Brown Stripe of Rice Caused by Acidovorax avenae subsp. avenae (Acidovorax avenae subsp. avenae에 의한 세균성줄무늬병의 연구동향)

  • 송완엽
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.69-76
    • /
    • 1999
  • Acidovorax avenae subsp. avenae is the causal pathogen of several hosts including oats corn foxtail millet wheatgrass sugarcane and rice. The pathogen is a seedborne pathogen of rice and known to occur widely in rice growing countries. The pathogen cause inhibition of germination brown stripe on the leaf curling of the leaf sheath and abnormal elongation of the mesocotyl of irce. Bacterial colonies grow slowly and are convex circular and creamy with tan to brown center. The causal baterium is Gram-negative and rod shape with a single polar flagellum Nonfluorescence poly-$\beta$-hydroxybutyrate accumulation and precipitate formation around the colony on the medium are useful in the differentiation of this bacterium from other subspecies of A. avenae as well as nonfluorescent bacteria pathogenic to rice. This bacterium has belonged to the genus of Psdeudomonas but recently was transferred to the new genus Acidovorax on the basis of bacteriological and molecular biological data. However the difference of biochemical characteristics protein profile of the cell and host range among strains should be more clarified. To develop an effective control strategy for this disease understanding of detailed life cycle of the disease ritical environmental factors affecting disease development on each host and relationship to grain discoloration of rice are prerequisite. Although the affected area has been world-widely reported there is on recent progress on the understanding of the bacteriological and ecological characteristics of the causal bacterium and control means of the disease.

  • PDF

A New Selective Medium for Detecting Acidovorax avenae subsp. avenae in Rice Seeds

  • Song, Wan-Yeob;Kang, Mi-Hyung;Kim, Hyung-Moo
    • The Plant Pathology Journal
    • /
    • v.16 no.4
    • /
    • pp.236-241
    • /
    • 2000
  • A selective agar medium was developed and tested for the isolation of Acidovorax avenae subsp. avenae, the causal bacterial pathogen of bacterial brown stripe, from rice seeds. The new selective agar medium, designated sorbitol pyroglutamic acid agar (SPA) medium, contained 0.5 g of $K_2$HPO$_4$, 3.0 g of Na$_2$HPO$_4$, 2.0 g of D-sorbitol, 0.2 g of L-pyroglutamic acid, 10.0 $m\ell$ of tween 80, 40.0 mg of victoria blue B, 15.0 g of agar, 150.0 mg of ampicillin and 25.0 mg of vancomycin per litter. Colonies of A. avenae subsp. avenae on SPA medium were smooth, round, convex, shiny, blue and 1.5-2.0 mm in diameter 4 days after incubation at 28$^{\circ}C$. Blue colored colony having dark blue zone was typical type of A. avenae subsp. avenae colonies on the medium. Mean recovery of 8 isolates of A. avenae subsp. avenae on the selective SPA medium was 95.8% in comparison to that on KB medium. The saprophytic bacteria were reduced to 97.9% on SPA medium compared to those on KB medium. Most of other rice seedborne bacteria as well as reported pathogenic bacteria were failed to grow on SPA medium. This medium was highly selective for recovering A. avenae subsp. avenae from rice seed samples, and it could be used to enhance the recovery of this bacterium from rice seed samples, which may be contaminated with large numbers of competing microorganisms.

  • PDF

Bacterial Stripe of Proso Millet Caused by Acidovorax avenae subsp. avenae in Korea (Acidovorax avenae subsp. avenae에 의한 기장 세균성줄무늬병)

  • Yoon, Young-Nam;Jung, Ji-Hun;Lee, Yeong-Hoon;Kim, Hyun-Joo;Bae, Soon-Do;Choi, Byeong-Ryeol;Nam, Min-Hee;Lee, Young-Kee
    • Research in Plant Disease
    • /
    • v.18 no.3
    • /
    • pp.236-239
    • /
    • 2012
  • In July, 2009, proso millet (Panicum miliaceum), which showing the bacterial brown stripes on leaf sheaths, was collected in Miryang in Korea. Symptoms were systemic brown necrotic stripe lesions on the leaf sheaths and stems, and these symptoms were found in the entire field. The causal agent isolated from symptomatic plants was identified as an Acidovorax avenae subsp. avenae, based on its biochemical and physiological characteristics and also confirmed by the Biolog data and 16S rRNA gene sequence analysis. Also it caused hypersensitive response (HR) when it was inoculated onto the tobacco and tomato. It caused similar symptoms when inoculated onto proso millet. This is the first report of A. avenae subsp. avenae, the causal agent of bacterial brown stripe of the proso millet in Korea.

Bacterial Fruit Blotch of Melon Caused by Acidovorax avenae subsp. citrulli (Acidovorax avenae subsp. citrulli에 의한 멜론 과실썩음병)

  • Seo, Sang-Tae;Park, Jong-Han;Lee, Jung-Sup;Han, Kyoung-Suk;Cheong, Seung-Ryong
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.185-188
    • /
    • 2006
  • In September and October 2005, melons(Cucumis melo L.) from the commercial greenhouses in Naju and Gwangju exhibited severe foliar necrosis and fruit rot. Leaf symptoms initially appeared as V-shaped, necrotic lesions and extending to the midrib. Symptoms on the fruit were occurred randomly as necrotic and sunken spots. Two isolates from diseased leaves and fruits were identified as Acidovorax avenae subsp. citrulli on the basis of bacteriological and genetic characteristics. Pathogenicity of the isolates was confirmed by inoculating on 3-week-old melon and cucumber seedlings. This is the first report of bacterial fruit blotch of melon in Korea.

Rapid and Specific Detection of Acidovorax avenae subsp. citrulli Using SYBR Green-Based Real-Time PCR Amplification of the YD-Repeat Protein Gene

  • Cho, Min Seok;Park, Duck Hwan;Ahn, Tae-Young;Park, Dong Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1401-1409
    • /
    • 2015
  • The aim of this study was to develop a SYBR Green-based real-time PCR assay for the rapid, specific, and sensitive detection of Acidovorax avenae subsp. citrulli, which causes bacterial fruit blotch (BFB), a serious disease of cucurbit plants. The molecular and serological methods currently available for the detection of this pathogen are insufficiently sensitive and specific. Thus, a novel SYBR Green-based real-time PCR assay targeting the YD-repeat protein gene of A. avenae subsp. citrulli was developed. The specificity of the primer set was evaluated using DNA purified from 6 isolates of A. avenae subsp. citrulli, 7 other Acidovorax species, and 22 of non-targeted strains, including pathogens and non-pathogens. The AC158F/R primer set amplified a single band of the expected size from genomic DNA obtained from the A. avenae subsp. citrulli strains but not from the genomic DNA of other Acidovorax species, including that of other bacterial genera. Using this assay, it was possible to detect at least one genomeequivalents of the cloned amplified target DNA using 5 × 100 fg/µl of purified genomic DNA per reaction or using a calibrated cell suspension, with 6.5 colony-forming units per reaction being employed. In addition, this assay is a highly sensitive and reliable method for identifying and quantifying the target pathogen in infected samples that does not require DNA extraction. Therefore, we suggest that this approach is suitable for the rapid and efficient diagnosis of A. avenae subsp. citrulli contaminations of seed lots and plants.

Incidence of Bacterial Brown Spot of Phalenopsis Orchids Caused by Acidovorax avenae subsp. cattleyae (Acidovorax avenae subsp. cattleyae에 의한 팔레놉시스 세균성갈색점무늬병의 발생)

  • Han, Kyung-Sook;Lee, Seung-Don;Park, Jong-Han;Han, You-Kyoung;Kim, Dae-Hyun;Lee, Jung-Sup
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.183-186
    • /
    • 2009
  • Leaf spot symptoms were observed in a commercial Palenopsis cultivated fields. Circular-elliptical watersoaked spots surrounded by a light green or yellow halo and turned to black when it was severe infection or blacken with gathered symptoms. These spots were finally enlarged to form of larger areas. Under the favorable conditions of temperature and moisture, the infection extended rapidly and dispersed to the crown and sometimes the infected plant became dead. A bacterial organism, isolated from the advancing margins of the lesions, was tested to characterize causing bacterium based on pathogenicity. The biochemical and physiological tests of that bacterium identified that as an Acidovorax avenae subsp. cattleyae. Therefore, we suggested to call that the new Phalaenopsis disease was bacterial brown spot caused by A.avenae subsp. cattleyae in Korea.

Isolation of Antimicrobial Active Substances from Chinese Gall Nut (Schlechtendalia chinensis) against Watermelon Fruit Rot Pathogens (Acidovorax avenae subsp. Citrulli) (오배자(Schlechtendalia chinensis)로부터 수박 과실썩음병 병원균(Acidovorax avenae subsp. citrulli)에 대한 항균 활성물질 탐색)

  • Kim, Hyun-Woo;Choi, Yong-Hwa
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.2
    • /
    • pp.323-334
    • /
    • 2015
  • This study was conducted to develop environment-friendly agricultural products with anti-microbial activity against Acidovorax avenae subsp. citrulli as a pathogen of bacterial fruit blotch in cucurbit. Schlechtendalia chinensis was extracted by MeOH and solvent fraction. The hexane fraction, which showed highest value of anti-microbial activity, was analyzed by GC-MS. Each mass spectra, corresponding to each peak of chromatogram, was compared to MS database of Wiley library. As a result, myristic acid, palmitic acid and 3-n-pentadecylphenol were identified as maine compounds showing antimicrobial activity against A. avenae subsp. citrulli. Bioassay using commercial myristic acid, palmitic acid and 3-n-pentadecylphenol to test for the anti-microbial activity conformed the anti-microbial activity of potential active compounds, and myristic acid and 3-n-pentadecylphenol showed strong activity. In conclusion, myristic acid and 3-n-pentadecylphenol identified from S. chinensis were anti-microbial chemicals.

Search for Plant-originated Antibacterial Compounds Against Pathogen (Acidovorax avenae subsp. citrulli) of Watermelon Bacterial Fruit Blotch (수박 과실썩음병 병원균(Acidovorax avenae subsp. citrulli)에 대한 식물유래 항균 활성물질 탐색)

  • Noh, Jin-Taek;Choi, Yong-Hwa
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.1
    • /
    • pp.77-89
    • /
    • 2015
  • 133 Species of medicinal plants were used for the development of natural agrichemicals with anti-microbial activity against Acidovorax avenae subsp. citrulli, a pathogen of bacterial fruit blotch in watermelon. The MeOH-extracts of these medicinal plants were examined for anti-microbial activity by bioassay. The MeOH-extract of Citrus unshiu Markovich had the strongest antibacterial activity against Acidovorax avenae subsp. citrulli. To identify anti-microbial compounds from Citrus unshiu Markovich, solvent-fractionation was used. The fraction of hexane, which showing the highest value of anti-microbial activity, was analyzed by GC-MS. Each mass spectra, corresponding to each peak of chromatogram, was compared to mass database of Wiley library. As a result, d-Limonene, ${\gamma}$-terpinene, ${\beta}$-linalool, terpineol, palmitic acid, 9,12-octadecadienoic acid, Linolenic acid, and stigmasterol were identified. Among them, d-Limonene, ${\gamma}$-terpinene, ${\beta}$-linalool, and terpineol confirmed to be shown the anti-microbial activity by bioassay. Especially, d-Limonene and ${\gamma}$-terpinene found to have strong activity. In conclusion, we thought d-limonene and ${\gamma}$-terpinene from Citrus unshiu Markovich. Latin, had anti-microbial activity against Acidovorax avenae subsp. citrulli and could be candidates for the control agents for the control of bacterial fruit blotch in watermelon.

Simultaneous Detection of Three Bacterial Seed-Borne Diseases in Rice Using Multiplex Polymerase Chain Reaction

  • Kang, In Jeong;Kang, Mi-Hyung;Noh, Tae-Hwan;Shim, Hyeong Kwon;Shin, Dong Bum;Heu, Suggi
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.575-579
    • /
    • 2016
  • Burkholderia glumae (bacterial grain rot), Xanthomonas oryzae pv. oryzae (bacterial leaf blight), and Acidovorax avenae subsp. avenae (bacterial brown stripe) are major seedborne pathogens of rice. Based on the 16S and 23S rDNA sequences for A. avenae subsp. avenae and B. glumae, and transposase A gene sequence for X. oryzae pv. oryzae, three sets of primers had been designed to produce 402 bp for B. glumae, 490 bp for X. oryzae, and 290 bp for A. avenae subsp. avenae with the $63^{\circ}C$ as an optimum annealing temperature. Samples collected from naturally infected fields were detected with two bacteria, B. glumae and A. avenae subsp. avenae but X. oryzae pv. oryzae was not detected. This assay can be used to identify pathogens directly from infected seeds, and will be an effective tool for the identification of the three pathogens in rice plants.