• 제목/요약/키워드: Acoustic scattering model

검색결과 57건 처리시간 0.025초

음향자원조사를 위한 동물플랑크톤 요각류의 음향산란이론모델의 검토 (Examination of Theoretical Acoustic Scattering Models for Copepods in an Acoustical Zooplankton Biomass Survey)

  • 황보규;신현옥;이대재;이유원
    • 한국수산과학회지
    • /
    • 제43권4호
    • /
    • pp.380-385
    • /
    • 2010
  • Several theoretical acoustic scattering models were applied to estimate the target strength (TS) for assessing the biomass of zooplankton, to overcome the difficulty of direct measurements. Acoustical scattering characteristics of copepods were estimated using three theoretical models, and the application of the models was evaluated for four frequencies of a scientific echo sounder. The scattering directivity by the body shapes of copepods at 200 kHz and 420 kHz was significantly affected by TS patterns. Averaged TS, however, were similar at higher frequencies. Consequently, a low frequency model, such as a truncated fluid sphere model, provides a good acoustical biomass estimation. The regressions of TS and 30 logL were < $TS_{200\;kHz}$ >= 30logL-118.4 ($R^2=0.716$) and < $TS_{420 kHz}$ > =30 logL-108.8 ($R^2=0.758$), respectively.

High-Frequency Bistatic Scattering from a Corrugated Sediment Surface

  • Cho, Hong-Sang;La, Hyoung-Sul;Yoon, Kwan-Seob;Na, Jung-Yul;Kim, Bong-Chae
    • The Journal of the Acoustical Society of Korea
    • /
    • 제25권2E호
    • /
    • pp.60-68
    • /
    • 2006
  • High-frequency bistatic scattering measurements from a corrugated surface were made in an acoustic water tank. First the azimuthal scattering pattern was measured from an artificially corrugated surface which has varying impedance. The corrugated surface was installed both transverse to the direction of incident wave and longitudinal to the direction of incident wave. The angle between the corrugated surface and the direction of the incident wave was about $45^{\circ}$. Second, the scattering strengths were measured from the flat sediment and the corrugated sediment. A critical angle of about $37^{\circ}$ was calculated in the acoustic water tank. The measurements were made at three fixed grazing angles: $33^{\circ}$ (lower than critical angle), $37^{\circ}$ (critical angle), and $41^{\circ}$ (higher than critical angle). The scattering angle and the grazing angle are equal in each measurement. Frequencies were from 50 kHz to 100 kHz with an increment of 1 kHz. The corrugated sediment was made transverse to the direction of the incident wave. The first measurement indicates that the scattering patterns depend on the relations between the corrugated surface and the direction of the incident wave. In the second measurement, the data measured from the flat sediment were compared to the APL-UW model and to the NRL model. The NRL model's output shows more favorable comparisons than the APL-UW model. In case of the corrugated sediment, the model and the measured data are different because the models used an isotropic wave spectrum of sediment roughness in the scattering calculations. The isotropic wave spectrum consists of $w_2$ and ${\gamma}_2$. These constants derived from sediment names or bulk size. The model which used the constants didn't consider the effect of a corrugated surface. In order to consider a corrugated surface, the constants were varied in the APL-UW model.

유영행동에 따른 대형 해파리의 음향산란 변동의 이론적 검토 (Theoretical Examination of the Effects of Fluctuation of Acoustic Scattering on the Swimming Behavior of Giant Jellyfish)

  • 이유원;황보규
    • 한국수산과학회지
    • /
    • 제42권2호
    • /
    • pp.165-170
    • /
    • 2009
  • Recently, wide spread distribution of the giant jellyfish, Nemopilema nomurai, has occurred in the East China Sea. This increased distribution has caused serious problems in inshore and offshore fisheries in Korea and Japan. As a result, it is necessary to evaluate the damage caused to the fisheries by jellyfish. Accordingly, several hydroacoustic studies have been conducted to estimate the target strength (TS) of the giant jellyfish. However, the effects of fluctuation in the acoustic scattering characteristics on swimming patterns have not yet been elucidated. Therefore, in this study, we theoretically estimated the effects of changes in the acoustic scattering pattern on the swimming behavior of jellyfish using the Distorted Wave Born Approximation (DWBA) model. The results confirmed that acoustic scattering of jellyfish results in a significant change in their swimming pattern. Specifically, our theoretical estimation indicated that the TS of giant jellyfish (d=40 cm) fluctuated until 8.5 dB at 38 kHz, 13.8 dB at 70 kHz, and 15.1 dB at 120 kHz based on changes in their swimming patterns.

어류 부레의 형태학적 차이에 따른 음향산란강도의 자세 및 주파수 의존성의 변화 (Changes in the Orientation and Frequency Dependence of Target Strength due to Morphological Differences in the Fish Swim Bladder)

  • 이대재
    • 한국수산과학회지
    • /
    • 제48권2호
    • /
    • pp.233-243
    • /
    • 2015
  • Controlled broadband acoustic scattering laboratory experiments were conducted using a linear chirp signal (95-220 kHz), and x-ray images of live and model fish with an artificial swim bladder were analyzed to investigate the changes in orientation and frequency dependence of target strength (TS) due to morphological differences in fish swim bladders. The broadband echoes from live and model fish were measured over an orientation angle range of ${\pm}45^{\circ}$ in the dorsal plane and in approximately $1^{\circ}$ increments. The location of nulls in the simulated echo response of the SINC [sinc function] model was overlaid on the TS map, showing the orientation and frequency dependence of fish TS, and they matched very well. It was possible to infer the equivalent fish scattering size (or swim bladder) using the null spacing in the experimentally obtained broadband TS map. Good agreement was observed for inferring the equivalent scattering size between the SINC model and the broadband echoes measured for the three fish species (black scraper Thamnaconus modestus; goldeye rockfish Sebastes thompsoni; and whitesaddled reef fish Chromis notatus). Some results of this inference are discussed.

점탄성 복합재가 포함된 다층구조 코팅재의 수중음향성능 해석모델 개발 (Development of Analysis Model for Underwater Acoustic Performance of Multi-Layered Coatings Containing Visco-Elastic Composites)

  • 김재호
    • 한국군사과학기술학회지
    • /
    • 제21권1호
    • /
    • pp.25-39
    • /
    • 2018
  • In this paper, an integrated analysis model for evaluating the underwater acoustic performance of the multilayered acoustic coatings containing visco-elastic composite layers with hollow glass microspheres is described. The model uses the effective medium theory considering the acoustic scattering and resonance effects of the inclusions. Also, the model incorporates the compressive deformation mechanism associated with hydrostatic pressure. The technique developed in this work was used as the acoustic layer design and performance analysis tools for the practical hull coatings and acoustic baffles in Korean next generation submarines.

포논 분산이 열전달 모델에 미치는 영향 (Impact of Phonon Dispersion on Thermal Conductivity Model)

  • 정재동
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1165-1173
    • /
    • 2003
  • The effects of (1) phonon dispersion on thermal conductivity model and (2) differentiation of group velocity and phase velocity are examined for germanium. The results show drastic change of thermal conductivity regardless of the same relaxation time model. Also the contribution of transverse acoustic (TA) phonon and longitudinal acoustic (LA) phonon on the thermal conductivity at high temperatures is reassessed by considering more rigorous dispersion model. Holland model, which is commonly used for modeling thermal conductivity, underestimates the scattering rate for TA phonon at high frequency. This leads the conclusion that TA is dominant heat transfer mode at high temperatures. But according to the rigorous consideration of phonon dispersion, the reduction of thermal conductivity is much larger than the estimation of Holland model, thus the TA at high frequency is expected to be no more dominant heat transfer mode. Another heat transfer mechanism may exist at high temperatures. Two possible explanations we the roles of (1) Umklapp scattering of LA phonon at high frequency and (2) optical phonon.

Phonon Dispersion이 열전달 모델에 미치는 영향 (Impact of Phonon Dispersion on Thermal Conductivity Model)

  • 정재동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1627-1632
    • /
    • 2003
  • The effect of (1) phonon dispersion in thermal conductivity model and (2) the differentiation of group velocity and phase velocity for Ge is examined. The results show drastic change of thermal conductivity regardless of using same relaxation time model. Also the contribution of transverse acoustic (TA) phonon and longitudinal acoustic (LA) phonon is changed by considering more rigorous dispersion model. Holland model underestimates the scattering rate for high frequency TA, so misleading conclusion, i.e. TA is dominant heat transfer mode at high temperature. But the actual reduction of thermal conductivity is much larger than the estimation by Holland model and high frequency TA is no more dominant heat transfer mode. Another heat transfer mechanism may exist for high temperature. Two possible explanations are (1) high frequency LA by Umklapp scattering and (2) optical phonon.

  • PDF

횡등방성 원통 셸에 의한 수중 음파의 공명 산란 (Resonant Scattering of Underwater Acoustic Wave by Transversely Isotropic Cylindrical Shells)

  • 김진연
    • 소음진동
    • /
    • 제7권3호
    • /
    • pp.449-455
    • /
    • 1997
  • A theoretical study is presented for the prediction of the scattering of obliquely incident plane acoustic wave by transversely isotropic cylindrical shells immersed in water. In dorder to illustrate the vailidity of the theory backscattering form functions are compared with the existing results for degenerated problems: the catterings by isotropic shell and transversely isotropic solid cylinder. The unidirectional fiber reinforced boron-aluminum composites are selected as a model of transversely isotropic materials having potential applications in practice. From the resonant scattering analysis of the partial backscattering form functions, the dispersion curves for fluid-borne Stoneley wave, guided wave along the shell, and the lowest three Lamb type waves can be found. The Lamb type dispersions are compared with those of the flat plate. The variation of anisotropy significantly affects the properties of circumferential waves. From these results, it can be possible to identify parametrically the material properties of anisotropic cylindrical targets.

  • PDF

파워흐름경계요소법을 이용한 원통형 구조물에 대한 음파산란해석 (The analysis of aoustic scattering problems by Indirect PFBEM with cylinder model)

  • 정필우;홍석윤;이호원;권현웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.90-93
    • /
    • 2005
  • Power Flow Boundary Element Method(PFBEM) has been used as a promising tool for radiation problems in the midium-to-high frequency. PFBEM is the numerical method that applies boundary element technique to Power Flow Analysis (PFA). Indirect PFBEM is developed for acoustic scattering problems in the open field and in various frequency. To verify the analytic results of indirect PFBEM for acoustic scattering problems are compared with those of SYSNOISE, and the results using two analytic methods show a good agreement.

  • PDF

교정구에 의한 음향 도플러유향유속계의 평균 체적후방산란강도 검토 (Verification of mean volume backscattering strength from acoustic doppler current profiler by using calibrated sphere method)

  • 양용수;이경훈;이대재;이동길
    • 수산해양기술연구
    • /
    • 제50권4호
    • /
    • pp.551-555
    • /
    • 2014
  • ADCPs have been widely used to estimate the dynamic characteristics and biomass of sound scattering layers (SSLs), and swimming speed of fish schools for analyzing SSLs spatial distribution and/or various behavior patterns. This result showed that the verification of the mean volume backscattering strength (MVBS or averaged SV, dB) acquired by the ADCP would be necessary for a quantitative analysis on the spatial distribution and the biomass estimation of the SSLs or fish school when ADCP is used for estimating their biomass. In addition, the calibrated sphere method was used to verify values of each MVBS obtained from 4 beams of ADCP (153.6 kHz) on the base of 3 frequencies (38, 120, 200 kHz) of Scientific echo sounder's split beam system. Then, the measured SV values were compared and analyzed in its Target Strength (TS, dB) values estimated by a theoretical acoustic scattering model.