• Title/Summary/Keyword: Adaptive Histogram

Search Result 150, Processing Time 0.025 seconds

An Adaptive Contrast Enhancement Method using Dynamic Range Segmentation for Brightness Preservation (밝기 보존을 위한 동적 영역 분할을 이용한 적응형 명암비 향상기법)

  • Park, Gyu-Hee;Cho, Hwa-Hyun;Lee, Seung-Jun;Yun, Jong-Ho;Chon, Myung-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • In this paper, we propose an adaptive contrast enhancement method using dynamic range segmentation. Histogram Equalization (HE) method is widely used for contrast enhancement. However, histogram equalization method is not suitable for commercial display because it may cause undesirable artifacts due to the significant change in brightness. The proposed algorithm segments the dynamic range of the histogram and redistributes the pixel intensities by the segment area ratio. The proposed method may cause over compressed effect when intensity distribution of an original image is concentrated in specific narrow region. In order to overcome this problem, we introduce an adaptive scale factor. The experimental results show that the proposed algorithm suppresses the significant change in brightness and provides wide histogram distribution compared with histogram equalization.

Development of Adaptive Endoscope Image Enhancer Using Histogram (Histogram을 이용한 적응형 내시경 Image Enhancer의 개발)

  • Lee, S.H.;Kim, J.H.;Song, C.G.;Lee, Y.M.;Kim, W.K.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.345-348
    • /
    • 1997
  • Endoscope image is the shape that a doctor sees inside of patient through endoscope. The characteristics of these images are much effected by the light source of endoscope, specially areas in short distance from a light have much light source and look clear, but areas in long distance from a light look dark relatively because of little light quantity. So we developed a new level adaptive image enhancer for the dark area in a endoscope image. The algorithm we made consists of three parts ; 1) Classification of histogram in segmented area 2) Smoothing and Adaptive Histogram Equalization 3) Adaptive Histogram Modification.

  • PDF

Adaptive local histogram modification method for dynamic range compression of infrared images

  • Joung, Jihye
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.73-80
    • /
    • 2019
  • In this paper, we propose an effective dynamic range compression (DRC) method of infrared images. A histogram of infrared images has narrow dynamic range compared to visible images. Hence, it is important to apply the effective DRC algorithm for high performance of an infrared image analysis. The proposed algorithm for high dynamic range divides an infrared image into the overlapped blocks and calculates Shannon's entropy of overlapped blocks. After that, we classify each block according to the value of entropy and apply adaptive histogram modification method each overlapped block. We make an intensity mapping function through result of the adaptive histogram modification method which is using standard-deviation and maximum value of histogram of classified blocks. Lastly, in order to reduce block artifact, we apply hanning window to the overlapped blocks. In experimental result, the proposed method showed better performance of dynamic range compression compared to previous algorithms.

Content-Based Image Retrieval using Color Feature of Region and Adaptive Color Histogram Bin Matching Method (영역의 컬러특징과 적응적 컬러 히스토그램 빈 매칭 방법을 이용한 내용기반 영상검색)

  • Park, Jung-Man;Yoo, Gi-Hyoung;Jang, Se-Young;Han, Deuk-Su;Kwak, Hoon-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.364-366
    • /
    • 2005
  • From the 90's, the image information retrieval methods have been on progress. As good examples of the methods, Conventional histogram method and merged-color histogram method were introduced. They could get good result in image retrieval. However, Conventional histogram method has disadvantages if the histogram is shifted as a result of intensity change. Merged-color histogram, also, causes more process so, it needs more time to retrieve images. In this paper, we propose an improved new method using Adaptive Color Histogram Bin Matching(AHB) in image retrieval. The proposed method has been tested and verified through a number of simulations using hundreds of images in a database. The simulation results have Quickly yielded the highly accurate candidate images in comparison to other retrieval methods. We show that AHB's can give superior results to color histograms for image retrieval.

  • PDF

Local Feature Detection on the Ocular Fundus Fluorescein angiogram Using Relaxation Process (이완법을 이용한 형광안저화상의 국소특징 검출)

  • 高昌林
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.5
    • /
    • pp.856-862
    • /
    • 1987
  • An local adaptive image segmentatin algorithm for local feature detection and effective clustering of unimodal histogram shape are proposed. Local adaptive difference image and its histogram are obtained from the input image. The parameters are derived from the histogram and used for the segmentation based on relaxatin process. The results showed effective region segmentation and good noise cleaning for the ocular fundus fluorescein angiogram which has low contrast and unimodal histogram.

  • PDF

Content-Based Image Retrieval Using Adaptive Color Histogram

  • Yoo Gi-Hyoung;Park Jung-Man;You Kang-Soo;Yoo Seung-Sun;Kwak Hoon-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.949-954
    • /
    • 2005
  • From the 90's, the image information retrieval methods have been on progress. As good examples of the methods, Conventional histogram method and merged-color histogram method were introduced. Dey could get good result in image retrieval. However, Conventional histogram method has disadvantages if the histogram is shifted as a result of intensity change. Merged-color histogram, also, causes more process so, it needs more time to retrieve images. In this paper, we propose an improved new method using Adaptive Color Histogram(ACH) in image retrieval. The proposed method has been tested and verified through a number of simulations using hundreds of images in a database. The simulation results have quickly yielded the highly accurate candidate images in comparison to other retrieval methods. We show that ACH's can give superior results to color histograms for image retrieval.

The Clip Limit Decision of Contrast Limited Adaptive Histogram Equalization for X-ray Images using Fuzzy Logic (퍼지를 이용한 X-ray 영상의 대비제한 적응 히스토그램 평활화 한계점 결정)

  • Cho, Hyunji;Kye, Heewon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.806-817
    • /
    • 2015
  • The contrast limited adaptive histogram equalization(CLAHE) is an advanced method for the histogram equalization which is a common contrast enhancement technique. The CLAHE divides the image into sections, and applies the contrast limited histogram equalization for each section. X-ray images can be classified into three areas: skin, bone, and air area. In clinical application, the interest area is limited to the skin or bone area depending on the diagnosis region. The CLAHE could deteriorate X-ray image quality because the CLAHE enhances the area which doesn't need to be enhanced. In this paper, we propose a new method which automatically determines the clip limit of CLAHE's parameter to improve X-ray image quality using fuzzy logic. We introduce fuzzy logic which is possible to determine clip limit proportional to the interest of users. Experimental results show that the proposed method improve images according to the user's preference by focusing on the subject.

Adaptive Histogram Projection And Detail Enhancement for the Visualization of High Dynamic Range Infrared Images

  • Lee, Dong-Seok;Yang, Hyun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.23-30
    • /
    • 2016
  • In this paper, we propose an adaptive histogram projection technique for dynamic range compression and an efficient detail enhancement method which is enhancing strong edge while reducing noise. First, The high dynamic range image is divided into low-pass component and high-pass component by applying 'guided image filtering'. After applying 'guided filter' to high dynamic range image, second, the low-pass component of the image is compressed into 8-bit with the adaptive histogram projection technique which is using global standard deviation value of whole image. Third, the high-pass component of the image adaptively reduces noise and intensifies the strong edges using standard deviation value in local path of the guided filter. Lastly, the monitor display image is summed up with the compressed low-pass component and the edge-intensified high-pass component. At the end of this paper, the experimental result show that the suggested technique can be applied properly to the IR images of various scenes.

Hand Segmentation Using Depth Information and Adaptive Threshold by Histogram Analysis with color Clustering

  • Fayya, Rabia;Rhee, Eun Joo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.5
    • /
    • pp.547-555
    • /
    • 2014
  • This paper presents a method for hand segmentation using depth information, and adaptive threshold by means of histogram analysis and color clustering in HSV color model. We consider hand area as a nearer object to the camera than background on depth information. And the threshold of hand color is adaptively determined by clustering using the matching of color values on the input image with one of the regions of hue histogram. Experimental results demonstrate 95% accuracy rate. Thus, we confirmed that the proposed method is effective for hand segmentation in variations of hand color, scale, rotation, pose, different lightning conditions and any colored background.

An Adaptive Dynamic Range Linear Stretching Method for Contrast Enhancement (영상 강조를 위한 Adaptive Dynamic Range Linear Stretching 기법)

  • Kim, Yong-Min;Choi, Jae-Wan;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.4
    • /
    • pp.395-401
    • /
    • 2010
  • Image enhancement algorithm aims to improve the visual quality of low contrast image through eliminating the noise and blurring, increasing contrast, and raising detail. This paper proposes adaptive dynamic range linear stretching(ADRLS) algorithm based on advantages of existing methods. ADRLS method is focused on generating sub-histograms of the majority through partitioning the histogram of input image and applying adaptive scale factor. Generated sub-histograms are finally applied by linear stretching(LS) algorithm. In order to validate proposed method, it is compared with LS and histogram equalization(HE) algorithm generally used. As the result, the proposed method show to improve contrast of input image and to preserve distinct characteristics of histogram by controlling excessive change of brightness.