• Title/Summary/Keyword: Adiabatic temperature

Search Result 408, Processing Time 0.051 seconds

Prediction of Adiabatic Temperature in Concrete as Semiadiabatic Temperature (간이단열온도로서 콘크리트의 단열온도 추정을 위한 연구)

  • Moon, Han-Young;Moon, Dae-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.121-129
    • /
    • 2001
  • The semi-adiabatic temperature rise and the losses of temperature of cement paste, mortar and concrete were measured by an apparatus of semi-adiabatic temperature. Heat of hydration was measured by a conduction calorimeter and adiabatic temperature rise of concrete was measured by an adiabatic calorimeter. The derived equation which can assume the adiabatic temperature was proposed by measuring the semi-adiabatic temperature of concrete. The maximum adiabatic temperature rise of concrete obtained by the derived equation of adiabatic temperature, $T_{ad}(t)=T_{sad}(t)+T_{dis}(t)$, showed $55^{\circ}C$ approximately and it had good relation with the other one obtained by the heat of hydration of cement paste and with maximum value which was measured by the adiabatic calorimeter. The adiabatic temperature rise obtained by derived equation was a different information in comparison with the value obtained by adiabatic temperature rise equations by Hell and et. al. in early age, but it showed similar tendencies with the other one according to elapsed time. Adiabatic temperature rise of lich mix concrete with highly cement content was predicted. The adiabatic temperature rise of cement paste and mortar obtained by derived equation from us showed comparatively matching results to compared with that of obtained by adiabatic temperature equation from concrete standard specification.

  • PDF

The Effect of Cement Content on Adiabatic Temperature Rise of Hot Weather Concrete (서중환경에서 콘크리트의 단열온도상승량에 미치는 시멘트량의 영향)

  • Choe, Jong-Jin;Kim, Gyu-Yong;Koo, Kyung-Mo;Kim, Hong-Seop;Ham, Eun-Young;Lee, Bo-Kyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.51-52
    • /
    • 2013
  • Generally, Adiabatic temperature rise and temperature rise rate are reported to increases when placement temperature, W/B and the unit water content is fixed. In this study, properties of adiabatic temperature rise on placement temperature consider the hot weather environments from of W/B 0.29, 0.34, 0.40 was reviewed, the amount of cement on mixing condition of the same W/B and unit water content evaluated on the impact of the adiabatic temperature rise. As a results, the adiabatic temperature rise of concrete is proportionate to binder as well as the cement content under the same unit water content.

  • PDF

Equipment for Measuring the Adiabatic Temperature Rise of Concrete by Compensating Heat Loss (열손실량 보정을 통한 콘크리트 단열온도상승량 예측 장치)

  • Jin, Eun-Woong;Kim, Chin-Yong;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.535-542
    • /
    • 2012
  • Adiabatic temperature rise test for predicting heat of hydration in mass concrete is especially inconvenient in the field. In order to overcome the problem, the equipment to effectively and conveniently measure semi-adiabatic temperature change was developed. The main objective of this paper is to propose a new and simple equipment for measuring semi-adiabatic temperature rise by using insulation bottles. In order to predict exact heat loss of concrete using this device, it is required to assume the specific heat loss coefficient of the device by water temperature change inside the experimental device. According to experimental and analytical results, the adiabatic temperature rise does not have significant differences in changes of temperature and humidity of air, as well as initial temperature of water. By comparing adiabatic temperature rise tests, the equipment for measuring semi-adiabatic temperature change can be used to predict the hydration heat of concrete within sufficient accuracy.

Temperature Distribution of an Air-Cooled PCB Mounted with Finned and Finnless Modules (휜이 부착된 강제 공랭 모듈을 실장한 기판의 온도분포에 관한 연구)

  • Shin, D.J.;Park, S.H.;Lee, I.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.624-629
    • /
    • 2001
  • An experimental study was performed to investigate adiabatic wall temperature and heat transfer coefficient around on a module with longitudinal fin heat sink cooled by forced air flow. In the first method, inlet air flow(1-7m/s) and input power(3-5W) was varied after a heated module were placed on an adiabatic floor($320{\times}550{\times}1mm^{3}$). An adiabatic wall temperature was determinated to use liquid crystal film(LCF). In the second method to determinate heat transfer coefficient, inlet air flow(1-7m/s) and the heat flux of rubber heater($0.031-0.062\;W/cm^{2}$) was varied after an adiabatic module was placed on rubber heater covering up an adiabatic floor. In addition, surface oil-film visualization were performed to characterize the macroscopic flow-field around a module.

  • PDF

Flow Characteristics in an Adiabatic Capillary Tube of Carbon Dioxide ($CO_2$ 단열 모세관내 유동 특성)

  • Roh, Geon-Sang;Son, Chang-Hyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.537-544
    • /
    • 2008
  • In this paper, flow characteristics of an adiabatic capillary tube in a transcritical $CO_2$ have been investigated employing the homogeneous model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factors(Churchill) and viscosity(McAdams) are comparatively used to investigate the flow characteristics. Supercritical and subcritical thermodynamic and transport properties of $CO_2$ are calculated employing EES property code. Flow characteristics analysis of $CO_2$ adiabatic capillary tube is presented to offer the basic design data for the operating parameters. The operating parameters considered in this study include inlet temperature and pressure of an adiabatic capillary tube, evaporating temperature and inner diameter tube. The main results were summarized as follows : inlet temperature and pressure of an adiabatic capillary tube, evaporating temperature, mass flowrate and inner diameter of $CO_2$ adiabatic capillary tube have an effect on length of an adiabatic capillary tube.

Mathematical Modeling of Combustion Characteristics in HVOF Thermal Spray Processes(I): Chemical Composition of Combustion Products and Adiabatic Flame Temperature (HVOF 열용사 프로세스에서의 연소특성에 관한 수학적 모델링(I): 연소생성물의 화학조성 및 단열화염온도)

  • Yang, Young-Myung;Kim, Ho-Yeon
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • Mathematical modeling of combustion characteristics in HVOF thermal spray processes was carried out on the basis of equilibrium chemistry. The main objective of this work was the development of a computation code which allows to determine chemical composition of combustion products, adiabatic flame temperature, thermodynamic and transport properties. The free energy minimization method was employed with the descent Newton-Raphson technique for numerical solution of systems of nonlinear thermochemical equations. Adiabatic flame temperature was calculated by using a Newton#s iterative method incorporating the computation module of chemical composition. The performance of this code was verified by comparing computational results with data obtained by ChemKin code and in the literature. Comparisons between the calculated and measured flame temperatures showed a deviation less than 2%. It was observed that adiabatic flame temperature augments with increase in combustion pressure; the influence was significant in the region of low pressure but becomes weaker and weaker with increase in pressure. Relationships of adiabatic flame temperature, dissociation ratio and combustion pressure were also analyzed.

  • PDF

A Comparison between the Internal Saturation Temperature of Working Fluid and the Surface Temperature of Adiabatic Zone of Two-Phase Closed Thermosyphons with Various Helical Grooves (평관형 및 나선 그루브형 열사이폰 내부 작동유체의 포화온도와 단열부의 표면온도에 관한 연구)

  • Han, K.I.;Cho, D.H.;Park, J.U.;Lee, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1243-1249
    • /
    • 2004
  • This study is focused on the comparison between the internal saturation temperature of the working fluid and the surface temperature of adiabatic zone of two-phase closed thermosyphons with various helical grooves. Distilled water, methanol and ethanol have been used as the working fluid. In the present work, a copper tube of the length of 1200mm and 14.28mm of inside diameter is used as the container of the thermosyphon. Each of the evaporator and the condenser section has a length of 550mm, while the remaining part of the thermosyphon tube is adiabatic section. A experimental study was carried out for analyzing the performances of having 50, 60, 70, 80, 90 helical grooves. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphons is also tested for the comparison. The results show that the numbers of grooves and the type of working fluids are very important factors for the operation of thermosyphons. A good agreement between the internal saturation temperature of working fluid and the surface temperature of adiabatic zone of two-phase closed thermosyphons with various helical grooves is obtained.

  • PDF

Properties of Adiabatic Temperature Rise of Concrete Using Different Types of Binder and Effects of Adiabatic Temperature on the Compressive Strength (결합재 종류에 따른 콘크리트의 단열온도상승특성 및 단열온도상승에 따른 압축강도특성에 관한 연구)

  • 하재담;김태홍;이종열;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.527-532
    • /
    • 2001
  • The crack of concrete induced by a temperature rise in early age concrete due to the heat of ration of cement is a serious problem for massive or high strength concrete structures. However, re is still no reasonable equations for the prediction of the temperature rising. On this study, the prediction equations of the heat of hydration of different types of binder are pained from the adiabatic temperature rise test, and compared with the results from different nations to obtain the best approximated equation. The strengths of concrete of which specimens were placed in the same chamber for the adiabatic to were compared with those under standard curing.

  • PDF

The estimation of adiabatic temperature rise of concrete considered hydration heat generation and thermal properties of constituents (콘크리트 고성재료의 수화발열 및 열적특성을 고려한 단열온도상승 예측에 관한 연구)

  • Shon, Myung-Soo;Kang, Suck-Hwa;Lee, Yang-Soo;Park, Yon-Dong;Kim, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.155-160
    • /
    • 1998
  • In this study, the estimation method of adiabatic temperature rise of concrete was developed by using hydration heat generation of mineral compounds of clinker and pozzolans. Specific heat considered the effects of mix proportion and temperature was calculated with experimental data. The adiabatic temperature rise calculated by developed method were compared with experiments in which many types of cement and admixtures were used. As the results of this study, it was found that the developed method could calculate adiabatic temperature rise of concrete accurately without the experiment.

  • PDF

A Study on the Heat Transfer Characteristics Around a Surface-Mounted Air-Cooled Module for the Flow Angle-of-Attack (흐름 영각에 따른 강제공랭 모듈 주위의 열전달 특성에 관한 연구)

  • Park, Sang-Hui;Sin, Dae-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1267-1275
    • /
    • 2002
  • An experimental study was performed to investigate adiabatic wall temperature and heat transfer coefficient around a module cooled by forced air flow. The flow angle of attack to the module were 0$^{\circ}$and 45$^{\circ}$. In the first method, inlet air flow(1~7m/s) and input power.(3, 5, 7W) were varied after a heated module was placed on an adiabatic floor(320$\times$550$\times$1㎣). An adiabatic wall temperature was determinated to use liquid crystal film. In the second method to determinate heat transfer coefficient, inlet air flow(1~7m/s) and the heat flux of rubber heater(0.031~0.062W/$m^2$) were varied after an adiabatic module was placed on rubber heater covering up an adiabatic floor. Additional information is visualized by an oil-film method of the surface flow on the floor and the module. Plots of $T_{ad}$ and $h_{ad}$ show marked effects of flow development from the module and dispersion of thermal wake near the module. Certain key features of the data set obtained by this investigation may serve as a benchmark for thermal-design codes based on CFD.