• Title/Summary/Keyword: Adipocyte

Search Result 708, Processing Time 0.021 seconds

Adipocyte and Chemokines: A Link between Preadipocyte/Adipocyte and Macrophage in Adipocyte- Related Pathologies

  • Yu, Rina
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.2
    • /
    • pp.194-198
    • /
    • 2004
  • This review will present a brief overview on the adipocytokines and chemokines in terms of their classifications and functions, and further discuss the most recent results of chemokine research into their regulation of adipocyte functions and/or adipocyte-related pathologies. The potential link between preadipocytes/adipocytes and macrophages will also be highlighted.

The Inhibitory Effect of L. plantarum Q180 on Adipocyte Differentiation in 3T3-L1 and Reduction of Adipocyte Size in Mice Fed High-fat Diet

  • Park, Sun-Young;Kim, Seulki;Lim, Sang-Dong
    • Food Science of Animal Resources
    • /
    • v.38 no.1
    • /
    • pp.99-109
    • /
    • 2018
  • In this study, we examined the inhibitory effect of L. plantarum Q180 on adipocyte differentiation in 3T3-L1 and reduction of adipocyte size in mice fed high-fat diet. L. plantarum Q180 inhibited the adipocyte differentiation of 3T3-L1 cells ($18.47{\pm}0.32%$) at a concentration of $400{\mu}g/mL$ ($10^8CFU/g$). As a result of western blot analysis, the expression of $C/EBP{\alpha}$ and $PPAR{\gamma}$ in 3T3-L1 adipocyte treated with $400{\mu}g/mL$ of L. plantarum Q180 decreased 35.16% and 40.07%, respectively, compared with the control. To examine the effects, mice were fed three different diets as follows: ND (n=6) was fed ND and orally administered saline solution; HFD (n=6), HFD and orally administered saline solution; and HFD+Q180 (n=6), HFD and orally administered L. plantarum Q180. After six weeks, the rate of increase of body weight was 13.7% lower in the HFD+Q180 group compared to the HFD group. In addition, the epididymal fat weights of the HFD+Q180 group were lower than that of the HFD group. The change of adipocyte size was measured in diet-induced obese mice. Consequently, the number of large-size adipose tissue was less distributed in the ND and HFD+Q180 groups than in the HFD group. L. plantarum Q180 has an effect on the inhibition of 3T3-L1 adipocyte differentiation, fat absorption and reduction of adipocyte size. L. plantarum Q180 could be applied to functional food products that help improve obesity.

Homeostatic balance of histone acetylation and deconstruction of repressive chromatin marker H3K9me3 during adipocyte differentiation of 3T3-L1 cells

  • Na, Han?Heom;Kim, Keun?Cheol
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1301-1308
    • /
    • 2018
  • Background Adipocyte differentiation is completed by changing gene expression. Chromatin is closely related to gene expression. Therefore, its structure might be changed for adipocyte differentiation. Mouse 3T3-L1 preadipocytes have been used as a cell model to study molecular mechanisms of adipogenesis. Objective To examine changes of chromatin modification and expression of histone modifying enzymes during adipocyte differentiation. Methods Microscopic analysis and Oil Red O staining were performed to determine distinct phenotype of adipocyte differentiation. RT-PCR and Western blot analysis were used to examine expression levels of histone modifying enzymes during adipocyte differentiation. Histone modifications were examined by immunostaining analysis. Results Expression levels of P300 and cbp were increased during adipocyte differentiation. However, acetylation of histones was not quantitatively changed postdifferentiation of 3T3-L1 cells compared to that at pre-differentiation. RT-PCR and Western blot analyses showed that expression levels of hdac2 and hdac3 were increased during adipocyte differentiation, suggesting histone acetylation at chromatin level was homeostatically controlled by increased expression of both HATs and HDACs. Tri-methylation level of H3K9 (H3K9me3), but not that of H3K27me3, was significantly decreased during adipocyte differentiation. Decreased expression of setdb1 was consistent with reduced pattern of H3K9me3. Knock-down of setdb1 induced adipocyte differentiation. This suggests that setdb1 is a key chromatin modifier that modulates repressive chromatin. Conclusion These results suggest that there exist extensive mechanisms of chromatin modifications for homeostatic balance of chromatin acetylation and deconstruction of repressive chromatin during adipocyte differentiation.

Inhibition of glutathione S-transferase omega 1-catalyzed protein deglutathionylation suppresses adipocyte differentiation

  • Sana Iram;Areeba Mashaal;Seulgi Go;Jihoe Kim
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.457-462
    • /
    • 2023
  • Glutathione S-transferase omega 1 (GstO1) is closely associated with various human diseases, including obesity and diabetes, but its functional mechanism is not fully understood. In the present study, we found that the GstO1-specific inhibitor C1-27 effectively suppressed the adipocyte differentiation of 3T3-L1 preadipocytes. GstO1 expression was immediately upregulated upon the induction of adipocyte differentiation, and barely altered by C1-27. However, C1-27 significantly decreased the stability of GstO1. Moreover, GstO1 catalyzed the deglutathionylation of cellular proteins during the early phase of adipocyte differentiation, and C1-27 inhibited this activity. These results demonstrate that GstO1 is involved in adipocyte differentiation by catalyzing the deglutathionylation of proteins critical for the early phase of adipocyte differentiation.

Roles of Protein Histidine Phosphatase 1 (PHPT1) in Brown Adipocyte Differentiation

  • Kang, Joo Ae;Kang, Hyun Sup;Bae, Kwang-Hee;Lee, Sang Chul;Oh, Kyoung-Jin;Kim, Won Kon
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.306-312
    • /
    • 2020
  • Despite the importance of brown adipocytes as a therapeutic target for the prevention and treatment of obesity, the molecular mechanism underlying brown adipocyte differentiation is not fully understood. In particular, the role of post-translational modifications in brown adipocyte differentiation has not been extensively studied. Histidine phosphorylation is increasingly recognized an important process for protein post-translational modifications. In this study, we show that histidine phosphorylation patterns change during brown adipocyte differentiation. In addition, the expression level of protein histidine phosphatase 1 (PHPT1), a major mammalian phosphohistidine phosphatase, is reduced rapidly at the early phase of differentiation and recovers at the later phase. During white adipocyte differentiation of 3T3-L1 preadipocytes, however, the expression level of PHPT1 do not significantly change. Knockdown of PHPT1 promotes brown adipocyte differentiation, whereas ectopic expression of PHPT1 suppresses brown adipocyte differentiation. These results collectively suggest that histidine phosphorylation is closely linked to brown adipocyte differentiation and could be a therapeutic target for obesity and related metabolic diseases.

Methyltransferase and demethylase profiling studies during brown adipocyte differentiation

  • Son, Min Jeong;Kim, Won Kon;Oh, Kyoung-Jin;Park, Anna;Lee, Da Som;Han, Baek Soo;Lee, Sang Chul;Bae, Kwang-Hee
    • BMB Reports
    • /
    • v.49 no.7
    • /
    • pp.388-393
    • /
    • 2016
  • Although brown adipose tissue is important with regard to energy balance, the molecular mechanism of brown adipocyte differentiation has not been extensively studied. Specifically, regulation factors at the level of protein modification are largely unknown. In this study, we examine the changes in the expression level of enzymes which are involved in protein lysine methylation during brown adipocyte differentiation. Several enzymes, in this case SUV420H2, PRDM9, MLL3 and JHDM1D, were found to be up-regulated. On the other hand, Set7/9 was significantly down-regulated. In the case of SUV420H2, the expression level increased sharply during brown adipocyte differentiation, whereas the expression of SUV420H2 was marginally enhanced during the white adipocyte differentiation. The knock-down of SUV420H2 caused the suppression of brown adipocyte differentiation, as compared to a scrambled control. These results suggest that SUV420H2, a methyltransferase, is involved in brown adipocyte differentiation, and that the methylation of protein lysine is important in brown adipocyte differentiation.

Effect of Lactobacillus plantarum FH185 on the Reduction of Adipocyte Size and Gut Microbial Changes in Mice with Diet-induced Obesity

  • Park, Sun-Young;Cho, Seong-A;Lee, Myung-Ki;Lim, Sang-Dong
    • Food Science of Animal Resources
    • /
    • v.35 no.2
    • /
    • pp.171-178
    • /
    • 2015
  • This study aimed to investigate the effects of Lactobacillus plantarum FH185 on the reduction of adipocyte size and gut microbial changes in mice with diet-induced obesity. The strain was found to have a lipase inhibitory activity of 70.09±2.04% and inhibited adipocyte differentiation of 3T3-L1 cells (18.63±0.98%) at a concentration of 100 µg/mL. To examine the effect of the strain supplementation on gut microbial changes in mice with diet-induced obesity, male C57BL/6J mice were fed on four different diets (i.e., A, normal diet (ND); B, high-fat diet (HFD); C, HFD with ABT-3 (109 CFU/day); and D, HFD with L. plantarum FH185 (109 CFU/day)) for 6 wk. According to the results of fecal pyrosequencing, the ratio of Firmicutes to Bacteroidetes in groups C and D was lower than in the control groups at the phylum level. At the family level, Lactobacillaceae in groups C and D was observed to dominate, while Lachnospiraceae in groups A and B was observed to dominate. At the genus level, Lactobacillus in groups C and D was comparatively higher than in groups A and B. To examine the effects of strain supplementation on the reduction of adipocyte size, the left and right epididymal fat pads were quickly isolated after the animals were sacrificed, and the adipocyte sizes were measured. In groups A, C and D, the percentage of 2,000 m2 of adipocyte was higher than in the other size of adipocyte, while the percentage of over 5,000 m2 of adipocyte was highest in group B. The mean adipocyte size of group D was significantly larger than that of group A, but smaller than that of group B.

15-Hydroxyprostaglandin Dehydrogenase Is Associated with the Troglitazone-Induced Promotion of Adipocyte Differentiation in Human Bone Marrow Mesenchymal Stem Cells

  • Noh, Min-Soo;Lee, Soo-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2010
  • Adipocyte differentiation in human bone marrow mesenchymal stem cells (hBM-MSCs) is not as efficient as that in murine pre-adipocytes when induced by adipogenic agents including insulin, dexamethasone, and 3-isobutyl-1-methylxanthine (IDX condition). Therefore, the promotion of adipocyte differentiation in hBM-MSCs has been used as a cell culture model to evaluate insulin sensitivity for anti-diabetic drugs. In hBM-MSCs, $PPAR{\gamma}$ agonists or sulfonylurea anti-diabetic drugs have been added to IDX conditions to promote adipocyte differentiation. Here we show that troglitazone, a peroxisome proliferator-activated receptor-gamma ($PPAR{\gamma}$) agonist, significantly reduced the levels of anti-adipogenic $PGE_2$ in IDX-conditioned hBM-MSC culture supernatants when compared to $PGE_2$ levels in the absence of $PPAR{\gamma}$ agonist. However, there was no difference in the mRNA levels of cyclooxygenases (COXs) and the activities of COXs and prostaglandin synthases during adipocyte differentiation in hBM-MSCs with or without troglitazone. In hBM-MSCs, troglitazone significantly increased the mRNA level of 15-hydroxyprostaglandin dehydrogenase (HPGD) which can act to decrease $PGE_2$ levels in culture. These results suggest that the role of $PPAR{\gamma}$ activation in promoting adipocyte differentiation in hBM-MSCs is to reduce anti-adipogenic $PGE_2$ levels through the up-regulation of HPGD expression.

Inhibitory Effects of Cultivated Wild Ginseng on the Differentiation of 3T3-L1 Pre-adipocytes

  • Mollah, Mohammad Lalmoddin;Cheon, Yong-Pil;In, Jun-Gyo;Yang, Deok-Chun;Kim, Young-Chul;Song, Jae-Chan;Kim, Kil-Soo
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.45-51
    • /
    • 2011
  • Wild ginseng has been used as a traditional medicine for thousands of years and for increase physical strength in Korea, China and Japan. This study reports that cultivated wild ginseng (CWG) inhibits adipocyte differentiation of 3T3-L1 pre-adipocytes in a concentration-dependent manner. Inhibition of adipocyte differentiation is one possible anti-obesity strategy. CWG inhibits the expression of the adipocyte differentiation regulator peroxisome proliferators-activated receptor (PPAR)${\gamma}$ and CCAAT/enhancer-binding protein ${\alpha}$mRNA. It also inhibited the expression of PPAR${\gamma}$ and adiponectin at the protein level during the differentiation of pre-adipocytes into adipocytes. Additionally, CWG blocked the cell cycle at the sub-$G_1$ phase transition, causing cells to remain in the pre-adipocyte state. These results indicate that CWG inhibits adipocyte differentiation and adipogenesis through pre-adipocyte cell cycle arrest in cultured 3T3-L1 cells.

Effects of (6)-gingerol, ginger component on adipocyte development and differentiation in 3T3-L1 (생강 성분인 (6)-Gingerol이 3T3-L1에서 지방세포 증식과 분화 과정에 미치는 영향)

  • Seo, Eun Young
    • Journal of Nutrition and Health
    • /
    • v.48 no.4
    • /
    • pp.327-334
    • /
    • 2015
  • Purpose: The objective of this study was to investigate the effects of (6)-gingerol, ginger components proliferation and adipocyte differentiation from early to lately steps. Methods: 3T3-L1 preadipocytes were cultured. Differentiation of confluent cells was induced with dexamethasone, isobutylxanthin and insulin for 2 day and cells were cultured by medium with insulin in presence of various concentrations 0, 25, 50, $100({\mu}mol/L)$ of (6)-gingerol for 4 day. Cell viability was measured using the EZ Cytox assay kit. In addition, we examined the expression of mRNA levels associated with each adipocyte differentiation step by real time reverse transcription polymerase chain reaction. Results: (6)-Gingerol inhibited adipocyte proliferation in a dose and time dependent manner. Expression of $C/EBP{\beta}$, associated with early differentiation step remained unchaged. However, intermmediate, late differentiation step and adipocytokines were effectively changed in dose-dependently manner in cell groups treated with (6)-gingerol. Conclusion: This study has shown that treatment with (6)-gingerol inhibited adipocyte proliferation as well as each adipocyte differentiation step. In particular, the (6)-gingerol more effectively inhibited adipocyte differentiation from intermmediate differentiation step.