• Title/Summary/Keyword: Adipose Acids

Search Result 108, Processing Time 0.03 seconds

Effects of Flaxseed Diets on Fattening Response of Hanwoo Cattle : 2. Fatty Acid Composition of Serum and Adipose Tissues

  • Kim, C.M.;Kim, J.H.;Chung, T.Y.;Park, K.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1246-1254
    • /
    • 2004
  • Two separate trials were designed to determine effects of dietary level of whole flaxseed (WFS) on fatty acid composition of serum, and subcutaneous, perirenal, intermuscular, and intramuscular adipose tissues of Korean Hanwoo cattle. Twentyone bulls (trial 1) and 15 cows (trial 2) were assigned to diets containing 0, 10 or 15% WFS. Relative treatment effects were similar between bulls and cows. The proportion of C18:3 in serum and to a lesser extent in adipose tissues were increased by dietary inclusion of WFS, reflecting supplemented lipid composition of WFS that escaped ruminal biohydrogenation. Animals fed WFS had a lower proportion of saturated fatty acids in serum and adipose tissues than animals fed diets without WFS, while the opposite trend was observed in unsaturated fatty acids with little differences between two WFS groups. WFS-fed animals had higher proportions of C18:1, 18:2, 18:3, 20:3, and 22:3 and lower proportions of C12:0, 14:0, 16:0 and 18:0 in intramuscular fat than animals fed diets without WFS. Furthermore, feeding WFS increased proportions of both $\omega$-3 and $\omega$-6 fatty acids but decreased the ratio of $\omega$-6/$\omega$-3 substantially. In conclusion, feeding WFS can be an effective method of increasing absorption of unsaturated fatty acids, and subsequent deposition in adipose tissues.

Transcriptional Regulation of Lipogenesis and Adipose Expansion (Lipogenesis와 adipose expansion의 전사조절)

  • Jang, Younghoon
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.318-324
    • /
    • 2022
  • PPARγ and C/EBPα are master adipogenic transcription factors (TFs) required for adipose tissue development. They control the induction of many adipocyte genes and the early phase of adipogenesis in the embryonic development of adipose tissue. Adipose tissue continues to expand after birth, which, as a late phase of adipogenesis, requires the lipogenesis of adipocytes. In particular, the liver and adipose tissues are major sites for de novo lipogenesis (DNL), where carbohydrates are primarily converted to fatty acids. Furthermore, fatty acids are esterified with glycerol-3-phosphate to produce triglyceride, a major source of lipid droplets in adipocytes. Hepatic DNL has been actively studied, but the DNL of adipocytes in vivo remains not fully understood. Thus, an understanding of lipogenesis and adipose expansion may provide therapeutic opportunities for obesity, type 2 diabetes, and metabolic diseases. In adipocytes, DNL gene expression is transcriptionally regulated by lipogenesis coactivators, as well as by lipogenic TFs such as ChREBP and SREBP1a. Recent in vivo studies have revealed new insights into the lipogenesis gene expression and adipose expansion. Future detailed molecular mechanism studies will determine how nutrients and metabolism regulate DNL and adipose expansion. This review will summarize recent updates of DNL in adipocytes and adipose expansion in terms of transcriptional regulation.

Sequencing of cDNA Clones Expressed in Adipose Tissues of Korean Cattle

  • Bong, J.J.;Tong, K.;Cho, K.K.;Baik, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.4
    • /
    • pp.483-489
    • /
    • 2005
  • To understand the molecular mechanisms that regulate intramuscular fat deposition and its release, cDNA clones expressed in adipose tissues of Korean cattle were identified by differential screening from adipose tissue cDNA library. By partial nucleotide sequencing of 486 clones and a search for sequence similarity in NCBI nucleotide databases, 245 clones revealed unique clones. By a functional grouping of the clones, 14% of the clones were categorized to metabolism and enzyme-related group (stearoyl CoA desaturase, lactate dehydrogenase, fatty acid synthase, ATP citrate lyase, lipoprotein lipase, acetyl CoA synthetase, etc), and 6% to signal transduction/cell cycle-related group (C/EBP, cAMP-regulated phosphoprotein, calmodulin, cyclin G1, cyclin H, etc), and 4% to cytoskeleton and extracellular matrix components (vimentin, ankyrin 2, gelosin, syntenin, talin, prefoldin 5). The obtained 245 clones will be useful to study lipid metabolism and signal transduction pathway in adipose tissues and to study obesity in human. Some clones were subjected to full-sequencing containing open reading frame. The cDNA clone of bovine homolog of human prefoldin 5 gene had a total length of 959 nucleotides coding for 139 amino acids. Comparison of the deduced amino acid sequences of bovine prefoldin 5 with those of human and mouse showed over 95% identity. The cDNA clone of bovine homolog of human ubiquitin-like/S30 ribosomal fusion protein gene had a total length of 484 nucleotides coding for 133 amino acids. Comparison of the deduced amino acid sequences of bovine ubiquitin-like/S30 ribosomal fusion protein gene with those of human, rat and mouse showed over 97% identity. The cDNA clone of bovine homolog of human proteolipid protein 2 mRNA had a total length of 928 nucleotides coding for 152 amino acids. Comparison of the deduced amino acid sequences of bovine proteolipid protein 2 with those of human and mouse showed 87.5% similarity. The cDNA clone of bovine homolog of rat thymosin beta 4 had a total length of 602 nucleotides coding for 44 amino acids. Comparison of the deduced amino acid sequences of bovine thymosin beta 4 gene with those of human, mouse and rat showed 93.1% similarity. The cDNA clone of bovine homolog of human myotrophin mRNA had a total length of 790 nucleotides coding for 118 amino acids. Comparison of the deduced amino acid sequences of bovine myotrophin gene with those of human, mouse and rat showed 83.9% similarity. The functional role of these clones in adipose tissues needs to be established.

Fatty Acid Profiles of Various Muscles and Adipose Tissues from Fattening Horses in Comparison with Beef Cattle and Pigs

  • He, M.L.;Ishikawa, S.;Hidari, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1655-1661
    • /
    • 2005
  • The present studies were designed to provide new information on fatty acid profiles of various muscles and adipose tissues of fattening horses in comparison with beef cattle and pigs. In the first study, the lipids were extracted respectively from subcutaneous, intermuscular adipose tissues, longissimus dorsi and biceps femoris muscles of fattening Breton horses (n = 8) with an average body weight of 1,124 kg. In the second study, the lipids were extracted from subcutaneous, intermuscular adipose tissues and longissimus dorsi muscle of fattening horses (n = 13), Japanese Black beef cattle (n = 5), Holstein steers (n = 5) and fattening pigs (n = 5). The fatty acids in the lipid samples were determined by gas chromatography after methylation by a combined base/acid methylation method. It was found that the lipids from horse subcutaneous and intermuscular adipose tissues contained more (p<0.05) polyunsaturated fatty acids (PUFA) which were mainly composed of linoleic acid (C18:2) and linolenic acid (C18:3) than those in the muscles. The weight percent of conjugated linoleic acids (CLA cis 9, trans 11) in lipids from biceps femoris muscle was 0.22%, which was higher (p<0.05) than that from the other depots. The horse lipids were higher (p<0.05) in PUFA but lower (p<0.05) in SFA and MUFA in comparison with those of the cattle and pigs. The percentage of C18:2 or C18:3 fatty acid in the horse lipids were respectively 2-8 fold or 5-18 fold higher (p<0.05) than those of the cattle and pigs. The percentages of CLA (cis 9, trans 11) in the horse lipids (0.14-0.16%) were very close to those of the pigs (0.18-0.19%) but much lower (p<0.05) than those of the Japanese Black beef cattle (0.55-0.94%) and Holstein steers (0.46-0.71%). The results indicated that the fatty acid profiles of lipids from different muscle and adipose tissues of fattening horses differed significantly. In comparison with that of the beef cattle and pigs, the horse lipids contained more C18:2 and C18:3 but less CLA.

Effects of Carbon Precursors and Hormones on the Lipogenesis and Lipolysis of Hanwoo Cattle Adipose Tissues

  • Lee, S.C.;Lee, H.J.;Kim, D.W.;Park, J.G.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.3
    • /
    • pp.300-306
    • /
    • 2000
  • This experiment was carried out to determine the contributions of acetate, glucose, amino acids and amino acid metabolites as carbon precursors for the incorporation of radioisotope, in intramuscular and subcutaneous adipose tissue and the effects of insulin on lipogenesis and adrenergic agent, norepinephrine on lipolysis in both tissues. The rate of incorporation of $C^{14}$ labelled acetate, glucose, leucine, isoleucine and ${\alpha}$-ketoisocaproic acid into adipose tissue has been measured in subcutaneous and intramuscular adipose tissues. The rate of incorporation was greater (p<0.05) from acetate than glucose in both subcutaneous and intramuscular adipose tissue and the rate of incorporation of carbon precursors into adipose tissues was greater in subcutaneous than in intramuscular adipose tissues. In comparison of amino acids, the rate was highest (p<0.05) with leucine followed by isoleucine and ${\alpha}$-ketoisocaproic acid in subcutaneous adipose tissue, in which there were no differences. Also, in intramuscular tissue, leucine was highest (p<0.05), and the rate of incorporation decreased in the same order. The rates of carbon precursor incorporation appeared to be higher in subcutaneous than in intramuscular tissue. For incorporation of radio-labelled acetate and glucose into intramuscular adipose tissue. preincubated for 48 hrs with insulin and IGF-1, insulin was the most effective to stimulate the incorporation of precursors in both substrates but there was no difference between insulin and IGF-1 in glucose incorporation. For glyceride-fatty acid synthesis, acetate was significantly (p<0.05) greater than glucose in both subcutaneous and intramuscular adipose tissue, and glyceride-glycerol synthesis was greater (p<0.05) for glucose than acetate in both adipose tissues. The rates of lipogenesis from both precursors were slightly greater in subcutaneous than intramuscular adipose tissue. There was significant (p<0.05) site effect in insulin treatment for glyceride-fatty acid synthesis. But there were no significance in control and norepinephrine. For glyceride-glycerol synthesis, there was no site effect caused by hormonal treatment. Insulin was the most effective (p<0.05) in glyceride fatty acid synthesis, while norepinephrine was the same as control. Compared with control, glyceride-glycerol synthesis from acetate in insulin treatment was significantly (p<0.05) low in subcutaneous, but high in intramuscular tissue. At the same time, in both tissues, it was lower in norepinephrine treatment than in control. Glyceride-glycerol synthesis from glucose was highest (p<0.05) in norepinephrine treatment followed by insulin although there was no significance between insulin and control. Lipolysis was not affected by insulin but was increased by norepinephrine when added to adipose tissue incubations in vitro. Rates of basal lipolysis were greater in subcutaneous adipose tissue than in intramuscular adipose tissue.

Regulation of Fat and Fatty Acid Composition in Beef Cattle

  • Smith, Stephen B.;Gill, Clare A.;Lunt, David K.;Brooks, Matthew A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1225-1233
    • /
    • 2009
  • Fat composition of beef, taken here to mean marbling, can be manipulated by time on feed, finishing diet, and breed type. These three factors also strongly influence the fatty acid composition of beef. Both the amount of marbling and the concentration of monounsaturated fatty acids (MUFA) increase with time on feed in grain-fed and pasture-fed cattle, but much more dramatically in grain-fed cattle. High-concentrate diets stimulate the activity of adipose tissue stearoyl-CoA desaturase (SCD), which is responsible for the conversion of saturated fatty acids (SFA) to their $\Delta{9}$ desaturated counterparts. Also, grain feeding causes a depression in ruminal pH, which decreases those populations of ruminal microorganisms responsible for the isomerization and hydrogenation of polyunsaturated fatty acids (PUFA). The net result of elevated SCD activity in marbling adipose tissue and depressed ruminal isomerization/hydrogenation of dietary PUFA is a large increase in MUFA in beef over time. Conversely, pasture depresses both the accumulation of marbling and SCD activity, so that even though pasture feeding increases the relative concentration of PUFA in beef, it also increases SFA at the expense of MUFA. Wagyu and Hanwoo cattle accumulate large amounts of marbling and MUFA, and Wagyu cattle appear to be less sensitive to the effects of pastures in depressing overall rates of adipogenesis and the synthesis of MUFA in adipose tissues. There are small differences in fatty acid composition of beef from Bos indicus and Bos taurus cattle, but diet and time on feed are much more important determinants of beef fat content and fatty acid composition than breed type.

Effects of $\omega$6 and $\omega$3 Fatty Acid Diets on the Fatty Acid Composition of the Mesenteric and Subcutaneous Fat of Lactating Rats

  • Chung, Hae-Yun;Chung, Eun-Jung;Lee, Yang-Cha-Kim
    • Nutritional Sciences
    • /
    • v.4 no.1
    • /
    • pp.3-12
    • /
    • 2001
  • Long chain polyunsaturated fatty acids (LCPUFA) are important components of brain phospholipds and play important role (s) in brain function. In rats, the maximum brain growth occurs during the period of lactation even though it happens during the third trimester of gestation in human. Since milk contained docosahexaenoic acid (DHA) even through the maternal diet had no DHA and/or a very small amount of its precursor, $\alpha$-linolenic acid ($\alpha$-LnA), an emphasis was given to maternal adipose tissue as a reservoir of this fatty acid. We, therefore, investigated the mesenteric and subcutaneous adipose tissues for their fatty acid composition in dams reared with different fat diets. Diets containing various amounts of $\omega$6 and $\omega$3 fatty acids were given to adult female rats (200-250g) throughout the pregnancy and lactation periods. Diets were composed of 10% (wt/wt) corn oil (CO), soybean oil (SO), perilla seed oil (PO) containing about 60% $\alpha$-LnA, or fish oil (FO) rich in eicosapentaenoic acid (EPA) and DHA. The fatty acid ompositions of mesenteric and subcutaneous fat were measured and evaluated at Day-2 and Day-15 after parturition. In general, major characteristics of dietary fatty acid composition was reflected on the fatty acid composition of adipose tissues. Dietary fatty acid composition was reflected more on mesenteric fat as compared to subcutaneous fat. Mesenteric fat was found to contain less arachidonic acid (AA) and mesenteric fats of CO, SO and PO groups contained less DHA than did the subcutaneous fat. The P/M/S ratios of adipose tissues were similar between experimental groups while dietary P/M/S ratios differed significantly. It was noticeable that a small proportion of DHA was found in the adipose tissues of animals of CO, SO and PO groups (Day-2) and in SO and PO groups (Day-15), the groups which do not contain DHA in their diets. The percentage of DHA in mesenteric fat o CO, SO and PO groups decreased as lactation continues, while the proportion of DHA in FO group increased. Adipose tissues of FO group had higher DHA/EPA ratio as compared to the diet. Considering the fact that the body contains a large amount of adipose tissues, our present finding suggests that the adipose tissue can serve as a reservoir of DHA for pregnant and lactating rats.

  • PDF

Molecular Cloning of Adipose Tissue-specific Genes by cDNA Microarray

  • Kim, Kee-Hong;Moon, Yang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1837-1841
    • /
    • 2003
  • In an attempt to isolate novel molecules that may play a regulatory role in adipocyte differentiation, we devised an experimental strategy to identify adipose tissue-specific genes by modifying cDNA microarray technique. We used genefilter membranes containing approximately 15,000 rat non-redundant EST clones of which 4,000 EST were representative clones of known genes and 11,000 ESTs were uncharacterized clones. A series of hybridization of genefilter membranes with cDNA probes prepared from various rat tissues and nucleic acids sequence analysis allowed us to identify two adipose-tissue specific genes, adipocyte-specific secretory factor (ADSF) and H-rev107. Verification of tissue-specific expression patterns of these two genes by Northern blot analysis showed that ADSF mRNA is exclusive expressed in adipose tissue and the H-rev107 mRNA is predominantly expressed in adipose tissue. Further analysis of gene expression of ADSF and H-rev107 during 3T3-L1 adipocyte differentiation revealed that the ADSF and H-rev107 gene expression patterns are closely associated with the adipocyte differentiation program, indicating their possible role in the regulation of adipose tissue development. Overall, we demonstrated an application of modified cDNA microarray technique in molecular cloning, resulting in identification of two novel adipose tissue-specific genes. This technique will also be used as a useful tool in identifying novel genes expressed in a tissue-specific manner.

Effect of dietary supplementation with Allium mongolicum Regel extracts on growth performance, carcass characteristics, and the fat color and flavor-related branched-chain fatty acids concentration in ram lambs

  • Liu, Wangjing;Ao, Changjin
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1134-1145
    • /
    • 2021
  • Objective: This study aimed to investigate the effect of dietary supplementation with Allium mongolicum Regel extracts on the growth performance, carcass characteristics, fat color, and concentrations of three branched-chain fatty acids related to flavor in ram lambs. Methods: Sixty 3-month-old, male, small-tailed Han sheep were selected and randomly allocated into four groups in a randomized block design. Four feeding treatments were used: i) a basal diet without supplementation as the control group (CK); ii) the basal diet supplemented with 10 g/lamb/d Allium mongolicum Regel powder as the AMR group; iii) the basal diet supplemented with 3.4 g/lamb/d Allium mongolicum Regel water extract as the AWE group; and iv) the basal diet supplemented with 2.8 g/lamb/d Allium mongolicum Regel ethanol extract as the AFE group. Results: The results demonstrated that the dry matter intake was lower for the AFE group than that in other groups (p = 0.001). The feed conversion ratio was greater for the AFE than that in other groups (p = 0.039). Dietary supplementation with Allium mongolicum Regel powder and its extracts decreased the concentrations of 4-methyloctanoic acid (MOA) (p<0.001), 4-ethyloctanoic acid (EOA) (p<0.001), and 4-methylnonanoic acid (MNA) (p = 0.044) in perirenal adipose tissue compared to those observed in the CK lambs. Dietary supplementation with Allium mongolicum Regel powder and its extracts decreased the concentrations of MOA (p<0.001) and EOA (p<0.001) in dorsal subcutaneous adipose tissue compared to those in the CK lambs. The concentrations of MOA (p<0.001) and EOA (p = 0.002) in omental adipose tissue were significantly affected by treatment, although there was a tendency for lower MNA (p = 0.062) in AMR, AWE, and AFE lambs than that in CK lambs. Conclusion: This study demonstrated that Allium mongolicum Regel and its extracts could significantly promote feed efficiency, although dry matter intake decreased and could decrease the MOA and EOA concentrations related to characteristic flavor and odor of body fat in lambs, except for tail adipose tissue.

Carcass and Meat Characteristics and Gene Expression in Intramuscular Adipose Tissue of Korean Native Cattle Fed Finishing Diets Supplemented with 5% Palm Oil

  • Park, Sungkwon;Yan, Zhang;Choi, Changweon;Kim, Kyounghoon;Lee, Hyunjeong;Oh, Youngkyoon;Jeong, Jinyoung;Lee, Jonggil;Smith, Stephen B.;Choi, Seongho
    • Food Science of Animal Resources
    • /
    • v.37 no.2
    • /
    • pp.168-174
    • /
    • 2017
  • We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression but depress stearoyl-CoA desaturase (SCD) gene expression in intramuscular (i.m.) adipose tissues of Hanwoo steers during fattening period (from 16 to 32 mon of age). Fourteen Hanwoo steers were allotted randomly to 2 groups of 7 steers based on initial BW and fed either a basal diet (control) or the basal diet supplemented with 5% palm oil (BDSP). At slaughter, i.m. adipose tissue was harvested for analysis of adipogenic gene expression and fatty acid composition. There were no differences in BW or average daily gain between treatment groups. Supplemental palm oil had no effect on carcass quality traits (carcass weight, backfat thickness, loin muscle area, or marbling scores) or meat color values. Palm oil increased (p<0.05) expression of AMP-activated protein kinase-${\alpha}$ and peroxisome proliferator-activated receptor-${\gamma}$, but decreased (p<0.05) CAAT/enhancer binding protein-${\beta}$ gene expression and tended to decrease stearoyl-CoA desaturase gene expression in i.m. adipose tissue. Palm oil increased total i.m. polyunsaturated fatty acids (p<0.05) compared to the control i.m. adipose tissue, but had no effect on saturated or monounsaturated fatty acids. Although there were significant effects of supplemental palm oil on i.m. adipose tissue gene expression, the absence of negative effects on carcass and meat characteristics indicates that palm oil could be a suitable dietary supplement for the production of Hanwoo beef cattle.