• Title/Summary/Keyword: Adsorbed Toxin

Search Result 2, Processing Time 0.021 seconds

Ability of Modified Glucomannan to Sequestrate T-2 Toxin in the Gastrointestinal Tract of Chicken

  • Reddy, N.B.;Devegowda, G.;Shashidhara, R.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.259-262
    • /
    • 2004
  • The ability of Modified Glucomannan (MG) to bind T-2 toxin (T-2) in the gastrointestinal tract has been tested in vivo by feeding 120 five-wk-old broiler chicken with the following six treatment diets, 1) Control diet; 2) Control+MG (0.1%); 3) Control+T-2 (500 ppb); 4) Control+T-2 (500 ppb)+MG (0.1%); 5) Control+T-2 (1,000 ppb) and 6) Control+T-2 (1,000 ppb)+MG (0.1%). Twenty birds were assigned to each treatment group, which had five experimental groups. Four birds of each experimental group were sacrificed at an interval of 30 min i.e. at 0, 30, 60, 90 and 120 min after feeding experimental diets. The whole gut contents of each bird were collected, dried and toxin concentration was determined. Percent T-2 recovered from the gut was significantly lower (p<0.05) in the groups fed MG at all the time intervals. The percent T-2 adsorbed by the MG at different T-2 levels (500 and 1,000 ppb) was 15.97 and 14.77, 22.53 and 22.67, 26.88 and 28.03, and 31.50 and 31.83 at 30, 60, 90 and 120 min, respectively.

Ultra-Sensitive Analysis of Microcystin LR Using Microchip Based Detection System

  • Pyo, Dong-Jin;Huang, Yan;Kim, Young-Min;Hahn, Jong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.939-942
    • /
    • 2005
  • For the detection of cyanobacterial toxin, an Enzyme-linked immunosorbent assay (ELISA) was integrated into a PDMS microchip. The conjugates of microcystin-LR (MCLR) and keyhole limpet hemocyanin (KLH) were adsorbed on the surface of polystyrene beads and these MCLR-KLH polystyrene beads were introduced into a microchamber. MCLR on the surface of polystyrene beads reacted with horseradish peroxides (HRP) conjugated anti-MCLR monoclonal antibody (mAb) which had a competitive reaction with MCLR in water sample. After the enzyme substrate 3,3,5,5-tetramethyl benzidine (TMB) was injected into the chamber and catalyzed by HRP, the color change was detected with a liquid-cord waveguide. This integration shortened the conventional ELISA analysis time from several hours to about 30 min with only 4.2 $\mu$L MCLR sample consuming which was useful for the environmental analysis. More over, troublesome operations required for ELISA could be replaced by simple operations. The microchip based detection system showed a good sensitivity of 0.05 $\mu$g/L and maintained good reliability through its quantitative range with low coefficients of variation (2.5-10.5%).