• Title/Summary/Keyword: Adsorbent

Search Result 1,020, Processing Time 0.03 seconds

Mathematical Model for Adsorption of Berberine on Encapsulated Adsorbent (캡슬에 고정화된 흡착제에의 Berberine의 흡착에 관한 수학적 모델)

  • 최정우;조상원이원홍
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.358-369
    • /
    • 1995
  • A mathematical model using local thermodynamic equilibrium isotherms for adsorption in encapsulated adsorbent is proposed in order to optimize the design parameters in situ bioproduct separation process. The model accurately follows the experimental data on the adsorption of berberine, secondary metabolite produced in Thaictrum rugosum plant cell culture. The adsorption rate on encapsulated adsorbent is compared with that on alginate-entrapped adsorbent. The result shows that the higher loading capacity in encapsulated adsorbent is mainly due to the increase in the maximum solid phase concentration. Based on the adsorption rate and loading capacity, the encapsulated adsorbent would be more useful than the entrapped adsorbent when used in situ bioproduct separation process. Design parameters in situ bioproduct separation process, such as the size of the capsule, membrane thickness, the ratio of capsule volume to bulk volume, the ratio of single capsule volume to total capsule volume and the adsorbent content in the capsule, are evaluated by using the model. The ratio of single capsule volume to total capsule volume is the most effective parameter for adsorption of berberine on encapsulated adsorbent.

  • PDF

Odor Removal with Powdered Adsorbent using Bag-filter System (분말 흡착제를 이용한 악취 저감 여과 집진장치 개발연구)

  • Xu, Rong-bin;Kim, Tae-Hyeung;Ha, Hyun-Chul;Piao, Cheng-Xu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.291-301
    • /
    • 2017
  • Objectives: In order to improve the working environment and solve the complaints, many efforts have been made to remove the odor from the industrial process. There are many disposal methods to remove odor, but there are many disadvantages and inadequate applications. The Purpose of this study was to develop a bag-filer system for odor removal using powder adsorbent. Methods: The bag-filter system is composed of a shear bag filter, an absorbent spraying system and an absorbent circulation system. The spraying absorbent system was connected with the inlet duct of the shear bag filter for inputting adsorbent. And the absorbent circulation system can transport the collecting adsorbent from hoper to the inlet duct of the system. As a result, the adsorbent can remove odor with recycling in the system. Also affective factors like the powdered absorbent combination and injection method was researched for maximization of system efficiency. The study was conducted in two stages. The first step was testing equipment made and the second is to evaluate the efficiency of the odor control by connecting to the actual odor generation process. Results: Both experiment stages showed efficient odor control ability. The adsorption efficiency of the system is demonstrated and the odor was adsorbed well by the powder adsorbent. It is essential to accurately understand the characteristics of the odorous and use the appropriate adsorbent. Although the powder adsorbent was used in the experiment, the problem of scattering did not occur due to the high degree of system sealing. Also the system manufactured in this study was designed to recycle the adsorbent, so adsorbent reuse or batch processing is convenient. Conclusions: The applicability of the system has been proven through this research. Customized systems for industrial process and the appropriate adsorbent base on the characteristics of pollutant generation will show efficient odor collection ability.

Preparation and characterization of green adsorbent from waste glass and its application for the removal of heavy metals from well water

  • Rashed, M. Nageeb;Gad, A.A.;AbdEldaiem, A.M.
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.53-71
    • /
    • 2018
  • Waste glass disposal causes environmental problems in the cities. To find a suitable green environmental solution for this problem low cost adsorbent in this study was prepared from waste glass. An effective new green adsorbent was synthesized by hydrothermal treatment of waste glass (WG), followed by acidic activation of its surface by HCl (WGP). The prepared adsorbent was characterized by scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), and BET surface measurement. The developed adsorbent was used for the removal of heavy metals (Cd, Cu, Fe, Pb and Zn) from well water. Batch experiments were conducted to test the ability of the prepared adsorbent for the removal of Cd, Cu, Fe, Pb and Zn from well water. The experiments of the heavy metals adsorption by adsorbent (WGP) were performed at different metal ion concentrations, solution pH, adsorbent dosage and contact time. The Langmuir and Freundlich adsorption isotherms and kinetic models were used to verify the adsorption performance. The results indicated high removal efficiencies (99-100%) for all the studied heavy metals at pH 7 at constant contact time of 2 h. The data obtained from adsorption isotherms of metal ions at different time fitted well to linear form of the Langmuir sorption equation, and pseudo-second-order kinetic model. Application of the resulted conditions on well water demonstrated that the modified waste glass adsorbent successfully adsorbed heavy metals (Cd, Cu, Fe, Pb and Zn) from well water.

A Study on Preparation of Adsorbent from Coffee Grounds and Removal of Trichloroethylene in Water Treatment (커피찌꺼기를 이용한 흡착제 제조 및 수중 Trichloroethylene(TCE) 흡착제거에 관한 연구)

  • 이향숙;강주원;양원호;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.20-31
    • /
    • 1998
  • There is a need for waste recycling. This study was carried out to investigate removal efficiency of TCE in water treatment with adsorbent made from coffee grounds which obtained after extraction of coffee through hot water. The removal of TCE in synthetic Waste water using adsorbents was examined varying dose, concentration and temperature on a laboratory scale. The results were as followed 1. As much as 95% TCE remogal was possible with adsorbent made from coffee grounds at an adsorbent dose over 2.5 g/l under the test conditions. 2. The removal rate of TCE was propotional to weight of adsorbent made from coffee grounds (0.025, 0.1, 0.3, 0.5 g). 3. In the effect of temperature, as temperature of wastewater was high, the rate of removal was increased. 4. Iodine number (865 mg/g) of adsorbent made from coffee grounds was not higher than that (1123 mg/g) of adsorbent made from coconut. But, in considering adsorption capacity, Iodine number was inapplicable to adsorbent made from coffee grounds. 5. Generally, Freundlich's equation applies to adsorption in wastewater. In case of TCE, slope (1/n) was 0.83, 1.06 and intercept (k) was 456.18, 405.19 at 150, 300 ppb respectively (average r=0.904, 0.933).

  • PDF

Study of the used deuterium absorption material disposal

  • Kim, Dong-Gyung;Kim, Myung-Chul;Lee, Bum-Sig;Lee, Sang-Gu
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.64-72
    • /
    • 2004
  • The dryer (ten per unit) are operating to remove tritium in PHWR(Pressurized Heavy Water Reactor). There are coming out heavy water adsorbent from operating the dryer (95 drums for ten year per unit) The amount of radioactivity of heavy water adsorbent almost exceed ninety times more than disposal limit-in-itself showed by The Ministry of Science and Technology. It has to be disposed whole radioactive waste products, however there are problems of increase at the expense of their permanent disposal. In this research, We have studied how to remove kinds of nuclear materials and amount of tritium with in heavy water adsorbent. As the result we could develop disposal equipment and apply it. D20 adsorbent have to contain below Gamma nuclide O.3Bq/g and tritium 100Bq/g "The Regulation for disposal of the radioactivity wastes" showed by The Ministry of Science and Technology. There fore. So as to remove amount of tritium and kinds of nuclear materials (DTO) we needed a equipment. Also we have studied how to remove effectively radioactivity with in Adsorbent. As cleaning heavy water adsorbent and drying on each condition (temperature for drying and hours for cleaning). Because there is something to return heavy water adsorbent by removing impurities within adsorbent when it is dried o high temperature. After operating, we have been applying this research to the way to dispose heavy water adsorbent. Through this we could reduce solid waste products and the expense of permanent disposal of radioactive waste products and also we could contribute nuclear power plant run safely. According to the result we could keep the best condition of radiation safety super vision and we could help people believe in safety with Radioactivity wastes control for harmony with Environment.

  • PDF

Synthesis and Phosphorus Adsorption Characteristics of Zirconium Magnetic Adsorbent Having Magnetic Separation Capability (자기분리가 가능한 지르코늄 자성 흡착제의 합성과 인 흡착 특성)

  • Lim, Dae-Seok;Kim, Yeon-Hyung;Kim, Dong-Rak;Lee, Tae-Gu;Lim, Hak-Sang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.431-442
    • /
    • 2012
  • The purpose of this study, is to separate magnetic separation devices using permanent magnets by using magnetization characteristics remaining in treated water after adsorption and synthesizing phosphorus adsorbent capable of magnetic separation for efficient removal of phosphorus. The synthesis of the adsorbent which set Zirconium(Zr) having high friendly features for phosphorus as an element, and by synthesizing Iron Oxide($Fe_3O_4$, another name of $Fe_3O_4$ is magnetite) being able to grant magnetism to Zirconium Sulfate($Zr(SO_4)_2$), zirconium magnetic adsorbent(ZM) were manufactured. In order to consider the phosphorus adsorption characteristics of adsorbent ZM, batch adsorption experiment was performed, and based on the results, pH effect, adsorption isotherm, adsorption kinetics, and magnetic separation have been explore. As the experiment result, adsorbent ZM showed a tendency that the adsorption number was decreased rapidly at pH 13; however, it was showed a high amount of phosphorus removal in other range and it showed the highest amount of phosphorus removal in pH 6 of neutral range. In addtion, the Langmuir adsorption isotherm model is matched well, and D-R adsorption isotherm model is ranged 14.43kJ/mol indicating ion exchange mechanism. The result shown adsorption kinetics match well to the Pseudo-second-order kinetic model. The adsorbent ZM's capablility of regenerating NaOH and $H_2SO_4$, was high selectivity on the phosphorus without impacts on the other anions. The results of applying the treated water after adsorption of phosphorus to the magnetic separation device by using permanent magnets, shows that capture of the adsorbent by the magnetization filter was perfect. And they show the possibility of utilization on the phosphorus removal in water.

Evaluation of acetaldehyde removal performance of a hybrid adsorbent consisting of organic and inorganic materials (유무기 융복합 흡착제의 아세트알데하이드 제거 성능 평가)

  • Ahn, Hae Young;Lee, Yoon Kyoung;Song, JiHyeon
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.372-380
    • /
    • 2018
  • To abate the problem of odor from restaurants, a hybrid adsorbent consisting of organic and inorganic materials was developed and evaluated using acetaldehyde as a model compound was deveioped and evaluated. Powders of activated carbon, bentonite, and calcium hydroxide were mixed and calcinated to form adsorbent structure. The surface area of the hybrid adsorbent was smaller than that of high-quality activated carbon, but its microscopic image showed that contours and pores were developed on its surface. To determine its adsorption capacity, both batch isotherm and continuous flow column experiments were performed, and these results were compared with those using commercially available activated carbon. The isotherm tests showed that the hybrid adsorbent had a capacity 40 times higher than that of the activated carbon. In addition, the column experiments revealed that breakthrough time of the hybrid adsorbent was 2.5 times longer than that of the activated carbon. These experimental results were fitted to numerical simulations by using a homogeneous surface diffusion model (HSDM); the model estimated that the hybrid adsorbent might be able to remove acetaldehyde at a concentration of 40 ppm for a 5-month period. Since various odor compounds are commonly emitted as a mixture when meat is barbecued, it is necessary to conduct a series of experiments and HSDM simulations under various conditions to obtain design parameters for a full-scale device using the hybrid adsorbent.

Development of an Immobilized Adsorbent for In Situ Removal of Ammonium Ion from Animal Cell Culture Media and Its Applications to Animal Cell Culture System : II. Application to Cell Culture System (동물세포 배양액으로부터 암모늄 이온의 동시제거를 위한 고정화 흡착제의 개발과 동물세포 배양 시스템에의 응용 : II. 세포배양 시스템에의 응용)

  • 박병곤;이해익;전계택;김익환;정연호
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.411-417
    • /
    • 1998
  • The possibility of application of membrane type immobilized adsorbent to the fed-batch or perfusion culture system with anchorage-independent cells as well as batch system was investigated. The improvement in cell density and cell viability due to the combination of immobilized adsorbent with each culture system was evaluated for the investigation, and the optimum culture system employing immobilized adsorbent system was suggested based on the results. It was observed that the system with immobilized adsorbent showed better cell growth and cell viability than that without immobilized adsorbent in every operation system of batch, fed-batch, and perfusion. In case of batch system, 200% improvement of maximum cell density was observed in the system where ammonium chloride was added on purpose. And 50% improvement of maximum cell density was observed in the fed-batch system where ammonium ion accumulates significantly, while small increase in maximum cell density was observed in the perfusion system where dilution of waste byproducts exists. Especially, the fed-batch system showed the most significant improvement on cell growth because both compensation of nutrient and removal of ammonium ion occurred simultaneously in the system. Therefore a combined system of immobilized adsorbent and fed-batch operation could be suggested as an optimum system with in situ removal of ammonium ion.

  • PDF

Study on the Adsorption of Carbon Dioxide in Passenger Cabin Using $Al_2O_3$ Adsorbent ($Al_2O_3$ 흡착제를 이용한 객실용 이산화탄소 흡착연구)

  • Cho, Young-Min;Choi, Jin-Sik;Lee, Ji-Yun;Kwon, Soon-Bark;Park, Duck-Shin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.138-141
    • /
    • 2011
  • Carbon dioxide concentration of railroad passenger cabin is obliged to be kept lower than guideline values of 'Indoor air quality guideline for public transportations', but actual carbon dioxide concentration frequently exceeds this guideline value during the morning and evening rush hours. For improving comfortability and satisfaction of passengers, concentration control method using $Al_2O_3$ adsorbents was presented. The adsorbent is made from $Al_2O_3$ and LiOH. $Al_2O_3$ perform as a frame and LiOH as a chemical adsorbent. The adsorbent performance experiment was carried out by measuring concentration change of Carbon dioxide in terms of flow, initial concentration and amount of adsorbent. It is expexted that the obtained results will be used to lower carbon dioxide concentration of railroad passenger cabin.

  • PDF

Adsorption of Heavy Metals by the Mixture of Macbansuk and Clay (맥반석과 점토로 성형한 흡착제에 의한 수중의 중금속 흡착)

  • 연익준;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.150-157
    • /
    • 1999
  • According to the fact that Macbansuk and clay are very porous, we produced combined adsorbent and we investigated the removing capacity of adsorbent to toxic heavy metal (Pb, Cu) in the single and mixed solution.Then the experimental parametars were pH, reaction time and amount of adsorbent. And we studied possibility of adsorbent by applying to the Freundlich isotherm. As raising the pH of single and mixed solution in range 2~5, the maximum adsorption capability was investigated in range 3~4. When Cu and Pb were applied to Freundlich isotherm, l/n were 0.291 and 0.513 respectively. In the case of mixed solution with both, l/n value was 0.614. In this study, we concluded that the combined adsorbent treated toxic heavy metal is possible under 100 ppm of its concentration.

  • PDF