• 제목/요약/키워드: Adsorption

검색결과 6,144건 처리시간 0.034초

흡착입자간 상호작용에 따른 흡착등온선 패턴 (Adsorption Isotherm Patterns According to the Interactions Between Adsorbed Particles)

  • 김철호
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.462-468
    • /
    • 2013
  • We study and describe-from the point of view of the interactions of the adsorbed particles-three types of the adsorption isotherms, namely, Langmuir type adsorption isotherms, phase transition type adsorption isotherms, and adsorption limited type adsorption isotherms, which are observed by experiments. By introducing and using a one dimensional statistical occupancy model, we derived analytical adsorption isotherms for the no force, the attractive force, and the repulsive force exerted on the other adsorbed particles. Our derived adsorption isotherms qualitatively pretty well agree with the experimental results of the adsorption isotherms. To specify each adsorption type, Langmuir type adsorption is a phenomenon that occurs with no forces between the adsorbed particles, phase transition type adsorption is a phenomenon that occurs with the strong attractive forces between the adsorbed particles, and adsorption limited type adsorption is a phenomenon that occurs with the repulsive forces between the adsorbed particles. The theoretical analysis-only using fundamental thermodynamics and occupancy statistics though-qualitatively quite well explains the experimental results.

Excellent toluene removal via adsorption by honeycomb adsorbents under high temperature and humidity conditions

  • Cho, Min-Whee;Kim, Jongjin;Jeong, Jeong Min;Yim, Bongbeen;Lee, Hyun-Jae;Yoo, Yoonjong
    • Environmental Engineering Research
    • /
    • 제25권2호
    • /
    • pp.171-177
    • /
    • 2020
  • Removal through adsorption is the most widely used and effective treatment method for volatile organic compounds (VOCs) in exhaust gases. However, at high temperatures and humidity, adsorption is competitive due to the presence of moisture and unsmooth physical adsorption thereby deteriorating adsorption performance. Therefore, water adsorption honeycomb (WAH) and VOCs adsorption honeycomb (VAH) were prepared to improve VOCs adsorption at high temperatures and humidity. Adsorbed toluene amounts on single honeycomb (SH), containing only VAH, and combined honeycomb (CH), containing WAH and VAH, were determined. Further, the toluene adsorption rates of honeycomb adsorbents mounted on rotary systems, VAH-single rotor (SR) and WAH/VAH-dual rotor (DR) were determined. Toluene adsorption by WAH/VAH-CH (inlet temperature: 40-50℃; absolute humidity: 28-83 gH2O/kg-dry air) was 1.6 times that by VAH-SH, and the water adsorption efficiency of WAH/VAH-CH was 1.7 times that of VAH-SH. The adsorption/removal efficiency of the WAH/VAH-DR (inlet temperature: 45℃; absolute humidity: 37.5 gH2O/kg-dry air) was 3% higher than that of VAH-SR. This indicates that the WAH at the rotor inlet selectively removed water, thereby improving the adsorption efficiency of the VAH at the outlet.

Reduction of Phosphate Adsorption by Ion Competition with Silicate in Soil

  • Lee, Yong-Bok;Kim, Pil-Joo
    • 한국환경농학회지
    • /
    • 제26권4호
    • /
    • pp.286-296
    • /
    • 2007
  • To increase phosphate (P) availability in soils, the efficiency of silicate (Si) in reducing P adsorption was investigated by competitive adsorption tests under changing conditions of pH, ion concentrations, and order of anion addition along with single adsorption properties of each ion at $20^{\circ}C$. In the single ion adsorption study, P and Si ions showed the opposite reaction patterns: phosphate adsorption decreased with increasing pH and attained adsorption maximum however, silicate adsorption increased with increasing pH without attaining adsorption maximum. Phosphorus and Si adsorption were influenced by pH in the range of 5.0 - 9.0 and the type and amount of P and Si concentration. Silicate added to soil before P or in a mixture with P significantly reduced P adsorption above pH 7.0; however, there was no significant Si-induced decreased in P adsorption at pH 5.0 when anions were added as mixture. The efficiency of Si in reducing P adsorption increased with increasing Si concentration and pH. The effect of P on Si adsorption was relatively small at pH 5.0 and no effect of P on silicate adsorption was observed at pH 9.0. The presence of Si strongly depressed P adsorption when Si was added before P compared to P and Si added as a mixture. These results suggest that application of Si may decrease P adsorption and increase the availability of P in soils. Furthermore, a Si source would be better to add before P application to enhance the availability of P in soils.

Applicability of Composite Beads, Spent Coffee Grounds/Chitosan, for the Adsorptive Removal of Pb(II) from Aqueous Solutions

  • Choi, Hee-Jeong
    • 공업화학
    • /
    • 제30권5호
    • /
    • pp.536-545
    • /
    • 2019
  • An experiment was conducted to evaluate the adsorptive removal of Pb(II) from an aqueous solution using a mixture of spent coffee grounds and chitosan on beads (CC-beads). Various parameters affecting the adsorption process of Pb(II) using CC-beads were investigated. Based on the experimental data, the adsorption kinetics and adsorption isotherms were analyzed for their adsorption rate, maximum adsorption capacity, adsorption energy and adsorption strength. Moreover, the entropy, enthalpy and free energy were also calculated by thermodynamic analysis. According to the FT-IR analysis, a CC-bead has a very suitable structure for easy heavy metal adsorption. The process of adsorbing Pb(II) using CC-beads was suitable for pseudo-second order kinetic and Langmuir model, with a maximum adsorption capacity of 163.51 (mg/g). The adsorption of Pb(II) using CC-beads was closer to chemical adsorption than physical adsorption. In addition, the adsorption of Pb(II) on CC-beads was exothermic and spontaneous in nature. CC-beads are economical because they are inexpensive and also the waste can be recycled, which is very significant in terms of the continuous circulation of resources. Thus, CC-beads can compete with other adsorbents.

EDCs/PhACs의 단일,복합 조건에서의 GAC에 대한 흡착 연구 (Adsorption of selected endocrine disrupting compounds (EDCs)/pharmaceutical active compounds (PhACs) onto granular activated carbon (GAC) : effect of single and multiple solutes)

  • 정찬일;손주영;윤여민;오재일
    • 상하수도학회지
    • /
    • 제28권2호
    • /
    • pp.235-248
    • /
    • 2014
  • The widespread occurrence of dissolved endocrine disrupting compounds(EDCs) and pharmaceutical active compounds(PhACs) in water sources is of concern due to their adverse effects. To remove these chemicals, adsorption of EDCs/PhACs on granular activated carbon(GAC) was investigated, and bisphenol A, carbamazepine, diclofenac, ibuprofen, and sulfamethoxazole were selected as commonly occurring EDCs/PhACs in the aquatic environment. Various adsorption isotherms were applied to evaluate compatability with each adsorption in the condition of single-solute. Removal difference between individual and competitive adsorption were investigated from the physicochemical properties of each adsorbate. Hydrophobicity interaction was the main adsorption mechanism in the single-solute adsorption with order of maximum adsorption capacity as bisphenol A > carbamazepine > sulfamethoxazole > diclofenac > ibuprofen, while both hydrophobicity and molecular size play significant roles in competitive adsorption. Adsorption kinetic was also controled by hydrophobicity of each adsorbate resulting in higher hydrophobicity allowed faster adsorption on available adsorption site on GAC. EDCs/PhACs adsorption on GAC was determined as an endothermic reaction resulting in better adsorption at higher temperature ($40^{\circ}C$) than lower temperature ($10^{\circ}C$).

혼합 흡착-연속추출법을 이용한 점토 차수재의 구리(Cu) 흡착 및 아연과 구리 경쟁 흡착 시 온도 영향에 관한 연구(II) (Effect of Temperature on Cu Adsorption and Competitive Adsorption of Zn and Cu onto Natural Clays using Combined Adsorption-sequential Extraction Analysis(II))

  • 도남영;이승래
    • 한국지반공학회논문집
    • /
    • 제16권4호
    • /
    • pp.157-170
    • /
    • 2000
  • 본 연구에서는 자연점토에 대한 구리 흡착 및 구리와 아연의 경쟁 흡착 시 온도변화에 따른 흙의 각 구성성분별 흡착거동을 살펴보기 위해 혼합 흡착-연속추출법(combined adsorption-sequential extraction analysis, CASA)을 사용하였다. 실험결과 중금속 아연의 경우 농도에 따른 차이는 있지만 온도증가에 따라 주로 이온교환 형태로 흡착되는 것을 알 수 있고, 구리와 경쟁흡착의 경우 이러한 경향은 더욱 커져서 약 80~90%정도가 이온교환형태로 흡착되어진다. 반면 구리의 경우 실험을 수행한 거의 모든 농도 범위에서 약 50%이상이 탄산염 형태로 흡착되어진다. 탄산염형태로의 흡착 양상은 단일 흡착의 경우 온도증가에 따라 약 5% 증가하는 경향을 보이고, 경쟁흡착의 경우에는 약 10%정도 증가하는 경향을 나타내었다. 그리고 자연점토에서의 아연과 구리의 각 구성성분 별 흡착거동은 이온 교환 형태로 분배되는 경우를 제외하고는 온도증가에 따라 흡착량이 증가하는 흡열반응$(\DeltaH0>0)$인 것으로 나타났다.

  • PDF

무정형 알루미나에서의 니켈(II) 이온의 흡착에 관한 연구 (Adsorption Studies of Nickel(II) Ions onto Amorphous Alumina)

  • 박영재;서무열;박경균;최광순;지광용;김원호
    • 분석과학
    • /
    • 제13권4호
    • /
    • pp.433-439
    • /
    • 2000
  • 무정형 알루미나를 흡착제로 사용하여 니켈(II) 이온의 흡착거동을 조사하였다. 흡착반응속도에 관하여 실험한 결과, 두 단계 흡착, 즉 한 시간 이내 빠르게 진행되는 흡착과 그 이후에는 느리게 진행되는 흡착으로 구분되었다. 흡착등은 실험에서는 Langmuir-Freundlich 흡착식을 만족하였으며 PH가 높을수록 최대흡착량이 증가함을 보였다. 이온강도의 변화에 따른 흡착량의 변화를 조사한 결과 어떤 뚜렷한 경향성을 보이지 않은 것으로 보아 니켈(II) 이온의 흡착은 정전기적 상호작용이라기 보다는 표면착물형성으로 이루어짐을 추정할 수 있었다. 일정한 이온강도에서 세 가지의 니켈(II) 이온 농도에서 pH를 변화시키면서 흡착량을 측정한 결과 니켈(II) 이온의 농도가 높을수록 흡착률은 감소했으며 흡착변곡점은 보다 높은 pH쪽으로 이동하였다.

  • PDF

합성 Goethite에 의한 인산이온, 황산이온 및 구리이온의 혼합용액에서의 흡착특성 (Adsorption Characteristics by Synthesized Goethite in the Mixed Solution Systems of Phosphate, Sulfate, and Copper Ions)

  • 감상규;이동환;이민규
    • 한국환경과학회지
    • /
    • 제12권10호
    • /
    • pp.1055-1060
    • /
    • 2003
  • Adsorption on goethite of individual component from a solution containing phosphate, sulfate, or copper ion was investigated. Competitive adsorption in the binary and ternary solution systems composed of phosphate, sulfate, and copper ions was also investigated. In competitive adsorption systems with phosphate and sulfate ions, the presence of phosphate ion reduced the adsorption of sulfate ion largely. On the other hand, the presence of sulfate ion caused only a small decrease in phosphate adsorption. This result suggests that phosphate ion is a stronger competitor for adsorption on goethite than sulfate ion, which is consistent with the higher affinity of phosphate for the surface compared to sulfate ion. Compared to the results from single-sorbate systems, adsorption of copper ion in the binary system of sulfate ion and copper ion was found to be enhanced in the presence of sulfate ion. Addition of sulfate ion to the binary system of copper ion and phosphate ion resulted in a small enhancement in copper sorption. This result implies that the presence of sulfate ion promotes adsorption of the ternary complex FeOHCuSO$_4$. The adsorption isotherms could be well described by the Langmuir adsorption equation.

층상이중수산화물을 이용한 인 흡착 (Phosphorus Adsorption by Layered Double Hydroxide)

  • 정용준;민경석
    • 상하수도학회지
    • /
    • 제19권4호
    • /
    • pp.404-410
    • /
    • 2005
  • A series of batch type adsorption experiments were performed to remove aquatic phosphorus, where the layered double hydroxide (HTAL-CI) was used as an powdered adsorbent. It showed high adsorption capacity (T-P removal: 99.9%) in the range of pH 5.5 to 8.8 in spite of providing low adsorption characteristics (pH<4). The adsorption isotherm was approximated as a modified Langmuir type equation, where the maximum adsorption amount (50.5mg-P/g) was obtained at around 80mg-P/L of phosphorus concentration. A phosphate ion can occupy three adsorption sites with a chloride ion considering the result that 1 mol of phosphate ion adsorbed corresponded to the 3 moles of chloride ion released. Although the chloride ion at less than 1,000mg-CI/L did not significantly affect the adsorption capacity of phosphate, carbonate ion inhibited the adsorption property.

Removal of Heavy Metals by Sawdust Adsorption: Equilibrium and Kinetic Studies

  • Lim, Ji-Hyun;Kang, Hee-Man;Kim, Lee-Hyung;Ko, Seok-Oh
    • Environmental Engineering Research
    • /
    • 제13권2호
    • /
    • pp.79-84
    • /
    • 2008
  • Adsorption of heavy metals by sawdust was investigated to evaluate the effectiveness of using sawdust to remove heavy metals from aqueous solutions. Kinetic and isotherm studies were carried out by considering the effects of initial concentration and pH. The adsorption isotherms of heavy metals fitted the Langmuir or Freundlich model reasonably well. The adsorption capacity of metal was in the order $Pb^{2+}$ > $Cu^{2+}$ > $Zn^{2+}$. A high concentration of co-existing ions such as $Ca^{2+}$ and $Mg^{2+}$ depressed the adsorption of heavy metal. Adsorption data showed that metal adsorption on sawdust follows a pseudo-second-order reaction. Kinetic studies also indicated that both surface adsorption and intraparticle diffusion were involved in metal adsorption on sawdust. Column studies prove that sawdust could be effective biosorbent for the removal of heavy metals from aqueous phase.