• Title/Summary/Keyword: Advanced water purification processes

Search Result 9, Processing Time 0.031 seconds

Techniques for Characterizing Surface Deterioration of Epoxy Exposed to Ozone Damage (오존에 노출된 에폭시 코팅재의 표면 열화특성 평가기술)

  • Choi, Sung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.167-177
    • /
    • 2014
  • New technologies for water purification are continuously emerging to address global water quality problems, and one such technology involves advanced hermetic water purification facilities made by concrete that utilize ozone treatment processes. Better knowledge about surface deterioration of epoxy coating exposed to ozone treatment is needed as a foundation for development of improved methods and materials in the future. This study utilized atomic force microscopy (AFM), nanoindentation methods, and existing indirect methods such as visual observation, changes in mass, surface observation and chrominance analysis, to evaluate epoxy water-resistance and anti-corrosiveness. This study considered six different epoxy formulations to assess typical degradation characteristics of epoxy surfaces with regard to water-resistance/anti-corrosiveness. AFM and nanoindentation techniques emerged as promising direct methods with potential to provide quantitative measures of surface quality that are improvements upon existing indirect methods. The experiments also confirmed that some of the epoxy-coatings were severely iMPacted by ozone exposure, and thus the results demonstrate that concern about such deterioration is justified.

Development of prediction models of chlorine bulk decay coefficient by rechlorination in water distribution network (상수도 공급과정 중 재염소 투입에 따른 잔류염소농도 수체감소계수 예측모델 개발)

  • Jeong, Bobae;Kim, Kibum;Seo, Jeewon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.17-29
    • /
    • 2019
  • This study developed prediction models of chlorine bulk decay coefficient by each condition of water quality, measuring chlorine bulk decay coefficients of the water and water quality by water purification processes. The second-reaction order of chlorine were selected as the optimal reaction order of research area because the decay of chlorine was best represented. Chlorine bulk decay coefficients of the water in conventional processes, advanced processes before rechlorination was respectively $5.9072(mg/L)^{-1}d^{-1}$ and $3.3974(mg/L)^{-1}d^{-1}$, and $1.2522(mg/L)^{-1}d^{-1}$ and $1.1998(mg/L)^{-1}d^{-1}$ after rechlorination. As a result, the reduction of organic material concentration during the retention time has greatly changed the chlorine bulk decay coefficient. All the coefficients of determination were higher than 0.8 in the developed models of the chlorine bulk decay coefficient, considering the drawn chlorine bulk decay coefficient and several parameters of water quality and statistically significant. Thus, it was judged that models that could express the actual values, properly were developed. In the meantime, the chlorine bulk decay coefficient was in proportion to the initial residual chlorine concentration and the concentration of rechlorination; however, it may greatly vary depending on rechlorination. Thus, it is judged that it is necessary to set a plan for the management of residual chlorine concentration after experimentally assessing this change, utilizing the methodology proposed in this study in the actual fields. The prediction models in this study would simulate the reduction of residual chlorine concentration according to the conditions of the operation of water purification plants and the introduction of rechlorination facilities, more reasonably considering water purification process and the time of chlorination. In addition, utilizing the prediction models, the reduction of residual chlorine concentration in the supply areas can be predicted, and it is judged that this can be utilized in setting plans for the management of residual chlorine concentration.

Adaptive method for the purification of zinc and arsenic ions contaminated groundwater using in-situ permeable reactive barrier mixture

  • Njaramba, Lewis Kamande;Nzioka, Antony Mutua;Kim, Young-Ju
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.283-288
    • /
    • 2020
  • This study investigated the purification process of groundwater contaminated with zinc and arsenic using a permeable reactive barrier with a zero-valent iron/pumice mixture. We determined the removal rates of the contaminants for 30 days. In this study, column reactor filled with the zero-valent iron/pumice reactive mixture was used. Experimental results showed that the mixture exhibited an almost complete removal of the zinc and arsenic ions. Arsenic was removed via co-precipitation and adsorption processes while zinc ions were asorbed in active sites.The purification process of water from the metal ionscontinued for 30 days with constant hydraulic conductivity because of the enhanced porosity of the pumice and interparticle distance between the zero-valent iron and pumice. Contaminants removal rates and the remediation mechanism for each reactive system are described in this paper.

Decomposition Analysis of Energy Use for Water Supply: From the Water-Energy Nexus Perspective (물 공급을 위한 에너지 사용 요인분해 분석: Water-Energy Nexus 관점에서)

  • Yoo, Jae-Ho;Jo, Yeon Hee;Kim, Hana;Jeon, Eui Chan
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.5
    • /
    • pp.240-246
    • /
    • 2022
  • Water and energy are inextricably linked and referred to as 'Water-Energy Nexus'. Recently, this topic has been drawing a lot of attention from various studies due to the exacerbated water availability. Korea's water and energy consumption has been increasing consistently, which calls for better management. This paper aims to identify changes in electricity consumption in relation to water intake and purification processes. Using Log Mean Divisia Index (LMDI) Decomposition Analysis method, this study attributes the changes to major factors such as; Total population (population effect), household/population (structure effect), GDP/household (economic effect), and water-related energy use/GDP (unit effect). The population effect, structure effect, and economic effect contributed to an increase in water-related electricity consumption, while the unit effect contributed to a decrease. As of 2019, the economic effect increased the water supply sector's electricity consumption by 534 GWh, the population effect increased by 73 GWh, and the structure effect increased by 243 GWh. In contrast, the unit effect decreased the electricity consumption by -461 GWh. We would like to make the following suggestions based on the findings of this study; first, the unit effect must be improved by increasing the energy efficiency of water intake and purification plants and installing renewable energy power generation facilities. Second, the structure effect is expected to increase over time, and to mitigate it, water consumption must be reduced through water conservation policies and the improvement of water facilities. Finally, the findings of this study are expected to be used as foundational data for integrated water and energy management.

Electrochemical treatment of wastewater using boron doped diamond electrode by metal inter layer

  • KIM, Seohan;YOU, Miyoung;SONG, Pungkeun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.251-251
    • /
    • 2016
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. Wastewaters are consisting of complex mixture of different inorganic and organic compounds and some of them can be toxic, hazardous and hard to degrade. These effluents are mainly treated by conventional technologies such are aerobic and anaerobic treatment and chemical coagulation. But, these processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that could be show higher purification results. Among them, boron doped diamond (BDD) attract attention as electrochemical electrode due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD on Nb, Ta, W and Si substrates, but, their application in effluents treatment is not suitable due to high cost of metal and low conductivity of Si. To solve these problems, Ti has been candidate as substrate in consideration of cost and property. But there are adhesion issues that must be overcome to apply Ti as BDD substrate. Al, Cu, Ti and Nb thin films were deposited on Ti substrate to improve adhesion between substrate and BDD thin film. In this paper, BDD films were deposited by hot filament chemical vapor deposition (HF-CVD) method. Prior to deposition, cleaning processes were conducted in acetone, ethanol, and isopropyl alcohol (IPA) using sonification machine for 7 min, respectively. And metal layer with the thickness of 200 nm were deposited by DC magnetron sputtering (DCMS). To analyze microstructure X-ray diffraction (XRD, Bruker gads) and field emission scanning electron microscopy (FE-SEM, Hitachi) were used. It is confirmed that metal layer was effective to adhesion property and improved electrode property. Electrochemical measurements were carried out in a three electrode electrochemical cell containing a 0.5 % H2SO4 in deionized water. As a result, it is confirmed that metal inter layer heavily effect on BDD property by improving adhesion property due to suppressing formation of titanium carbide.

  • PDF

Reactive sputtered tin adhesion for wastewater treatment of BDD electrodes (TiN 중간층을 이용한 수처리용 BDD 전극)

  • KIM, Seo-Han;KIM, Shin;KIM, Tae-Hun;SONG, Pung-Keun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.69-69
    • /
    • 2017
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. There effluents are mainly treated by conventional technologies such are aerobic, anaerobic treatment and chemical coagulation. But, there processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These techniques include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that show higher purification results and low toxic sludge. There are many kinds of electrode materials for electrochemical process, among them, boron doped diamond (BDD) attracts attention due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD, among them, researches are focused BDD on Si substrate. But, Si substrate is hard to apply electrode application due to the brittleness and low life time. And other substrates are also not suitable for wastewater treatment electrode due to high cost. To solve these problems, Ti has been candidate as substrate in consideration of cost and properties. But there are critical issues about adhesion that must be overcome to apply Ti as substrate. In this study, to overcome this problem, TiN interlayer is introduced between BDD and Ti substrate. TiN has higher electrical and thermal conductivity, melting point, and similar crystalline structure with diamond. The TiN interlayer was deposited by reactive DC magnetron sputtering (DCMS) with thickness of 50 nm, $1{\mu}m$. The microstructure of BDD films with TiN interlayer were estimated by FE-SEM and XRD. There are no significant differences in surface grain size despite of various interlayer. In wastewater treatment results, the BDD electrode with TiN (50nm) showed the highest electrolysis speed at livestock wastewater treatment experiments. It is thought to be that TiN with thickness of 50 nm successfully suppressed formation of TiC that harmful to adhesion. And TiN with thickness of $1{\mu}m$ cannot suppress TiC formation.

  • PDF

Effect of Ozone Concentration on AOP Efficiency of Secondary Effluent from Pig Slurry Purification System (오존 접촉농도가 양돈슬러리 2차 처리수의 고도처리 효율에 미치는 영향)

  • Jeong, K.H.;Jeon, S.K.;Ryu, S.H.;Kim, J.H.;Kwag, J.H.;Ann, H.K.;Jeong, M.S.;Yoo, Y.H.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.3
    • /
    • pp.181-188
    • /
    • 2011
  • With an increasing livestock population, animal manure production has been steadily increasing in Korea. This trend has forced farmers to spend more money for animal manure treatment in their farm. Therefore, research utilizing animal manure as a renewable resources has become increasingly important. The purpose of this study was to develop a stable advanced wastewater treatment system can be applied to conventional animal wastewater treatment processes and evaluate its contribution to reduce effluent discharge volume by recycling as flushing water. AOP (advanced oxidation process) process improved wastewater treatment efficiency in terms of color, suspended solids (SS) and chemical oxygen demand (COD). Due to the addition of Hydrogen peroxide ($H_2O_2$), pathogens, Salmonella and E. coli, reduction was accomplished. To enhance ozone treatment effect, three levels of ozone test on secondary effluent of pig slurry purification system were conducted. At the level of 5 g/hr, 6.7 g/hr and 8.4 g/hr color of secondary effluent of pig slurry purification system were decreased from 2,433 to 2,199, 2,433 to 1,980 and 2,433 to 243, respectively.

A comparative study on the degradation of methyl orange, methylene blue and congo red by atmospheric pressure jet

  • Park, Ji Hoon;Yusupov, Maksudbek;Lingamdinne, Lakshmi Prasanna;Koduru, Janardhan Reddy;Bogaerts, Annemie;Choi, Eun Ha;Attri, Pankaj
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.190.1-190.1
    • /
    • 2016
  • One of the most serious problems faced by billions of people today is the availability of fresh water. According to statistics, 15% of the world's total output of dye products is discharged into the environment as dye wastewater, which seriously pollutes groundwater resources. For the treatment of chemically and biologically contaminated water the advanced oxidation processes (AOPs) shows the promising action. The main advantage with AOPs is the ability to degrade the organic pollutants to $CO_2$ and $H_2O$. For this degradation process the AOPs generation of powerful and non-selective radicals that may oxidize majority of the organic pollutants present in the water body. To generate the various reactive chemical species such as radicals (${\bullet}OH$, ${\bullet}H$, ${\bullet}O$, ${\bullet}HO_2$) and molecular species ($H_2O_2$, $H_2$, $O_2$) in large amount in water, we have used the atmospheric pressure plasma. Among the reactive and non-reactive species, the hydroxyl radical (${\bullet}OH$) plays important role due to its higher oxidation potential (E0: 2.8 V). Therefore, in this work we have checked the degradation of various dyes such as methyl orange, methylene blue and congo red using different type of atmospheric pressure plasma sources (Indirect jet and direct jet). To check the degradation we have used the UV-visible spectroscopy, HPLC and LC-MS spectroscopy. Further, to estimate role of ${\bullet}OH$ on the degradation of dyes we have studied the molecular dynamic simulation.

  • PDF

Development and Application of Multi-Functional Floating Wetland Island for Improving Water Quality (수질정화를 위한 다기능 인공식물섬의 개발과 적용)

  • Yoon, Younghan;Lim, Hyun Man;Kim, Weon Jae;Jung, Jin Hong;Park, Jae-Roh
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.221-230
    • /
    • 2016
  • Multi-functional floating wetland island (mFWI) was developed in order to prevent algal bloom and to improve water quality through several unit purification processes. A test bed was applied in the stagnant watershed in an urban area, from the summer to the winter season. For the advanced treatment, an artificial phosphorus adsorption/filtration medium was applied with micro-bubble generation, as well as water plants for nutrient removal. It appeared that the efficiency of chemical oxygen demand (COD) and total phosphorus (T-P) removal was higher in the warmer season (40.9%, 45.7%) than in the winter (15.9%, 20.0%), and the removal performance (suspended solid, chlorophyll a) in each process differs according to seasonal variation; micro-bubble performed better (33.1%, 39.2%) in the summer, and the P adsorption/filtration and water plants performed better (76.5%, 59.5%) in the winter season. From the results, it was understood that the mFWI performance was dependent upon the pollutant loads in different seasons and unit processes, and thus it requires continuous monitoring under various conditions to evaluate the functions. In addition, micro-bubbles helped prevent the formation of anaerobic zones in the lower part of the floating wetland. This resulted in the water circulation to form a new healthy aquatic ecosystem in the surrounding environment, which confirmed the positive influence of mFWI.