• Title/Summary/Keyword: Aeroelastic Response Analysis

Search Result 48, Processing Time 0.025 seconds

Aeroelastic Response of an Airfoil-Flap System Exposed to Time-Dependent Disturbances

  • Shim, Jae-Hong;Sungsoo Na;Chung, Chan-Hun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.560-572
    • /
    • 2004
  • Aeroelastic response and control of airfoil-flap system exposed to sonic-boom, blast and gust loads in an incompressible subsonic flowfield are addressed. Analytical analysis and pertinent numerical simulations of the aeroelastic response of 3-DOF airfoil featuring plunging-pitching-flapping coupled motion subjected to gust and explosive pressures in terms of important characteristic parameters specifying configuration envelope are presented. The comparisons of uncontrolled aeroelastic response with controlled one of the wing obtained by feedback control methodology are supplied, which is implemented through the flap torque to suppress the flutter instability and enhance the subcritical aeroelastic response to time-dependent excitations.

Aeroelastic testing of a self-supported transmission tower under laboratory simulated tornado-like vortices

  • Ezami, Nima;El Damatty, Ashraf;Hamada, Ahmed;Hangan, Horia
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.199-213
    • /
    • 2022
  • The current study investigates the dynamic effects in the tornado-structure response of an aeroelastic self-supported lattice transmission tower model tested under laboratory simulated tornado-like vortices. The aeroelastic model is designed for a geometric scale of 1:65 and tested under scaled down tornadoes in the Wind Engineering, Energy and Environment (WindEEE) Research Institute. The simulated tornadoes have a similar length scale of 1:65 compared to the full-scale. An extensive experimental parametric study is conducted by offsetting the stationary tornado center with respect to the aeroelastic model. Such aeroelastic testing of a transmission tower under laboratory tornadoes is not reported in the literature. A multiaxial load cell is mounted underneath the base plate to measure the base shear forces and overturning moments applied to the model in three perpendicular directions. A three-axis accelerometer is mounted at the level of the second cross-arm to measure response accelerations to evaluate the natural frequencies through a free-vibration test. Radial, tangential, and axial velocity components of the tornado wind field are measured using cobra probes. Sensitivity analyses are conducted to assess the variation of the structural dynamic response associated with the location of the tornado relative to the lattice transmission tower. Three different layouts representing the change in the orientation of the tower model relative to the components of the tornado-induced loads are considered. The structural responses of the aeroelastic model in terms of base shear forces, overturning moments, and lateral accelerations are measured. The results are utilized to understand the dynamic response of self-supported transmission towers to the tornado-induced loads.

Aeroelastic Response Analysis of 3D Wind Turbine Blade Considering Rotating and Flow Separation Effects (회전과 유동박리효과를 고려한 3차원 풍력발전 터빈 블레이드의 공탄성 응답 해석)

  • Kim, Dong-Hyun;Kim, Yo-Han;Kim, Dong-Man;Kim, Yu-Sung;Hwang, Mi-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.68-75
    • /
    • 2009
  • In this study, aeroelastic response analyses have been conducted for a 3D wind turbine blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade. Vibration analyses of rotating wind-turbine blade have been conducted using the general nonlinear finite element program, SAMCEF (Ver.6.3). Reynolds-averaged Navier-Stokes (RANS)equations with spalart-allmaras turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous Mach contour on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating wind-turbine blade model.

  • PDF

COMPARATIVE STUDY ON THE INTERPOLATION METHODS FOR THE AEROELASTIC ANALYSIS (공탄성 해석을 위한 보간 기법 비교 연구)

  • Lee, Jae-Hun;Kwon, Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.141-144
    • /
    • 2005
  • The fluid-structure interaction analysis such as a static aeroelastic analysis requires the result of each analysis as an input to other analysis. Usually the grids for the fluid analysis and the structural analysis are different, so the results should be transformed properly for each other. The Infinite Plate Spline(IPS) and the Thin Plate Spline(TPS) are used in interpolating the displacement and the pressure. In this study, such interpolation methods are compared with kriging which provides a precise response surface. The static aeroelastic analysis is performed for the supersonic flow field with shock waves and the pressure field is interpolated by the TPS and kriging. The TPS shows tendency to weaken the shock stength, whereas kriging preserves the shock strength.

  • PDF

공탄성 해석 및 제어를 위한 일반화된 비정상 공기력 계산 및 근사화 기법

  • Lee, Sang-Wook;Kim, Tae-Uk;Hwang, In-Hee
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • In this study, the method of computing and extracting the generalized unsteady aerodynamic matrices using MSC/NASTRAN and MSC/NASTRAN DMAP ALTER has been suggested for the analysis and control of aeroelastic phenomena such as flutter and gust response analysis. In addition to that, the method of approximating the generalized unsteady aerodynamic matrices using minimum state approximation method has been proposed in order to cast the aeroelastic equations of motion in state space form for aeroelastic analysis and control application. Simplified aircraft wing box model has been used for the validation of the methods suggested in this study.

  • PDF

Efficient Time Domain Aeroelastic Analysis Using System Identification

  • Kwon, Hyuk-Jun;Kim, Jong-Yun;Lee, In;Kim, Dong-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.52-60
    • /
    • 2005
  • The CFD coupled aeroelastic analyses have significant advantages over linear panel methods in their accuracy and usefulness for the simulation of actual aeroelastic motion after specific initial disturbance. However, in spite of their advantages, a heavy computation time is required. In this paper, a method is discussed to save a computational cost in the time domain aeroelastic analysis based on the system identification technique. The coefficients of system identification model are fit to the computed time response obtained from a previously developed aeroelastic analysis code. Because the non-dimensionalized data is only used to construct the model structure, the resulting model of the unsteady CFD solution is independent of dynamic pressure and this independency makes it possible to find the flutter dynamic pressure without the unsteady aerodynamic computation. To confirm the accuracy of the system identification methodology, the system model responses are compared with those of the CFD coupled aeroelastic analysis at the same dynamic pressure.

Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system

  • Azzi, Ziad;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam Gan;Shdid, Caesar Abi
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.231-257
    • /
    • 2022
  • Transmission lines systems are important components of the electrical power infrastructure. However, these systems are vulnerable to damage from high wind events such as hurricanes. This study presents the results from a 1:50 scale aeroelastic model of a multi-span transmission lines system subjected to simulated hurricane winds. The transmission lines system considered in this study consists of three lattice towers, four spans of conductors and two end-frames. The aeroelastic tests were conducted at the NSF NHERI Wall of Wind Experimental Facility (WOW EF) at the Florida International University (FIU). A horizontal distortion scaling technique was used in order to fit the entire model on the WOW turntable. The system was tested at various wind speeds ranging from 35 m/s to 78 m/s (equivalent full-scale speeds) for varying wind directions. A system identification (SID) technique was used to evaluate experimental-based along-wind aerodynamic damping coefficients and compare with their theoretical counterparts. Comparisons were done for two aeroelastic models: (i) a self-supported lattice tower, and (ii) a multi-span transmission lines system. A buffeting analysis was conducted to estimate the response of the conductors and compare it to measured experimental values. The responses of the single lattice tower and the multi-span transmission lines system were compared. The coupling effects seem to drastically change the aerodynamic damping of the system, compared to the single lattice tower case. The estimation of the drag forces on the conductors are in good agreement with their experimental counterparts. The incorporation of the change in turbulence intensity along the height of the towers appears to better estimate the response of the transmission tower, in comparison with previous methods which assumed constant turbulence intensity. Dynamic amplification factors and gust effect factors were computed, and comparisons were made with code specific values. The resonance contribution is shown to reach a maximum of 18% and 30% of the peak response of the stand-alone tower and entire system, respectively.

A 3-DOF forced vibration system for time-domain aeroelastic parameter identification

  • Sauder, Heather Scot;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.481-500
    • /
    • 2017
  • A novel three-degree-of-freedom (DOF) forced vibration system has been developed for identification of aeroelastic (self-excited) load parameters used in time-domain response analysis of wind-excited flexible structures. This system is capable of forcing sinusoidal motions on a section model of a structure that is used in wind tunnel aeroelastic studies along all three degrees of freedom - along-wind, cross-wind, and torsional - simultaneously or in any combination thereof. It utilizes three linear actuators to force vibrations at a consistent frequency but varying amplitudes between the three. This system was designed to identify all the parameters, namely, aeroelastic- damping and stiffness that appear in self-excited (motion-dependent) load formulation either in time-domain (rational functions) or frequency-domain (flutter derivatives). Relatively large displacements (at low frequencies) can be generated by the system, if required. Results from three experiments, airfoil, streamlined bridge deck and a bluff-shaped bridge deck, are presented to demonstrate the functionality and robustness of the system and its applicability to multiple cross-section types. The system will allow routine identification of aeroelastic parameters through wind tunnel tests that can be used to predict response of flexible structures in extreme and transient wind conditions.

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.

Aeroelastic Response Analysis for Wing-Body Configuration Considering Shockwave and Flow Viscous Effects (충격파 및 유동점성 효과를 고려한 항공기 날개-동체 형상에 대한 공탄성 응답)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Hwang, Mi-Hyun;Kim, Su-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.984-991
    • /
    • 2009
  • In this study, transonic aeroelastic response analyses have been conducted for the DLR-F4(wing-body) aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.