• Title/Summary/Keyword: Aerostatic bearings

Search Result 10, Processing Time 0.029 seconds

A Study on the Actively Controlled Aerostatic Journal Bearing using Cylindrical Capacitance Displacement Sensor (원통형 변위센서를 장착한 능동 공기 베어링에 관한 연구)

  • Park, Sang-Shin;Kim, Gyu-Ha
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.34-43
    • /
    • 2008
  • In this paper, an actively controlled aerostatic bearing is studied to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled aerostatic bearing is composed of aerostatic bearings, non-contact type of displacement sensors, piezoelectric actuators and controllers. The cylindrical capacitance sensor (CCS) is used as the displacement sensor. The reason for using CCS instead of the commercial gap sensor is that it can give us the pure error motion of the spindle because it removes the roundness error or the geometric errors in the spindle. The controller is designed by the state space equation and quadratic optimal control theory. The characteristic data of the actively controlled aerostatic bearing system in the frequency domain are presented and the stiffness and damping coefficients of the bearing are mentioned. This paper shows the possibility to reduce the motion error up to 6000 rpm.

Study on the Air Bearings with Actively Controllable Magnetic Preloads for an Ultra-precision Linear Stage (초정밀 직선 이송계용 능동 자기예압 공기베어링에 관한 연구)

  • Ro, Seung-Kook;Kim, Soo-Hyun;Kwak, Yoon-Keun;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.134-142
    • /
    • 2008
  • In this paper, we propose a precise linear motion stage supported by magnetically preloaded air bearings. The eight aerostatic bearings with rectangular carbon porous pads were located only one side of vertical direction under the platen where four bearings are in both sides of horizontal direction as wrap-around-design, and this gives simpler configuration than which constrained by air bearings for all direction. Each of the magnetic actuators has a permanent magnet generating static magnetic flux far required preload and a coil to perturb the magnetic farce resulting adjustment of air- bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder was designed and built to verify this design concept. The load capacity, stiffness and preload force were examined and compared with analysis. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed. It was shown that motion control far three DOF motions were linear and independent after calibration of the control gains.

Development of Wafer Grinding Spindle with Porous Air Bearings (다공질 공기 베어링을 적용한 반도체 웨이퍼 연마용 스핀들 개발)

  • Donghyun Lee;Byungock Kim;Byungchan Jeon;Gyunchul Hur;Kisoo Kim
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.28-34
    • /
    • 2023
  • Because of their cleanliness, low friction, and high stiffness, aerostatic bearings are used in numerous applications. Aerostic bearings that use porous materials as means of flow restriction have higher stiffness than other types of bearings and have been successfully applied as guide bearings, which have high motion accuracy requirements. However, the performances of porous bearings exhibit strong nonlinearity and can vary considerably depending on design parameters. Therefore, accurate prediction of the performance characteristics of porous bearings is necessary or their successful application. This study presents a porous bearing design and performance analysis for a spindle used in wafer polishing. The Reynolds and Darcy flow equations are solved to calculate the pressures in the lubrication film and porous busing, respectively. To verify the validity of the proposed analytical model, the calculated pressure distribution in the designed bearing is compared with that derived from previous research. Additional parametric studies are performed to determine the optimal design parameters. Analytical results show that optimal design parameters that obtain the maximum stiffness can be derived. In addition, the results show that cross-coupled stiffness increases with rotating speed. Thus, issues related to stability should be investigated at the design stage.

Simulation of Motion Accuracy Considering Loads in Linear Motion Units (부하를 고려한 직선운동유니트의 정밀도 시뮬레이션 기술)

  • Khim, Gyungho;Park, Chun Hong;Oh, Jeong Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.405-413
    • /
    • 2015
  • This paper presents the motion accuracy simulation considering loads such as workpiece weight, cutting force, cogging force of a linear motor, and force caused by misalignment and runout error of a ballscrew in linear motion units. The transfer function method is basically utilized to estimate 5-DOF motion errors, together with the equilibrium equations of force and moment on the table. The transfer function method is modified in order to consider clearance changed according to the loads in the double sided hydrostatic/aerostatic bearings. Then, the analytic model for predicting the 5-DOF motion errors is proposed with the modified transfer function method. Motion errors were simulated under different loading conditions in the linear motion units using hydrostatic, aerostatic, and linear motion bearings, respectively. And the proposed analytic model was verified by comparing the estimated and measured motion errors.

A study on the dynamic characteristics of the porous air bearing with moving velocity change (이송속도 변화에 따른 다공질 공기 베어링의 거동에 관한 연구)

  • You, Tae-Hwan;Jung, Soon-Chul;Lee, Jae-Eung;Choi, Hyoung-Gil;Ji, Hong-Kyu;Kim, Hyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.48-52
    • /
    • 2007
  • A lot of researches have been done in order to investigate the dynamic characteristics of the aerostatic porous bearing, most of them used analytical approaches and only a few used experimental approaches. However the experimental condition used in the previous experimental approaches was not realistic, where the porous bearing has been fixed and only the mass supported by the bearing was allowed to move vertically. The dynamic stiffness obtained by those experimental setups may be different with the real case where the mass and the bearing move together in horizontal direction. In this paper, the dynamic characteristics of the horizontally moving aerostatic circular porous air bearings are investigated by the experimental approach. The experimental apparatus was designed to realize its real operating condition used in most industrial applications. The experimental results were compared with the previous experimental ones.

  • PDF

Modeling and Multivariable Control of a Novel Multi-Dimensional Levitated Stage with High Precision

  • Hu Tiejun;Kim Won-jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • This paper presents the modeling and multivariable feedback control of a novel high-precision multi-dimensional positioning stage. This integrated 6-degree-of-freedom. (DOF) motion stage is levitated by three aerostatic bearings and actuated by 3 three-phase synchronous permanent-magnet planar motors (SPMPMs). It can generate all 6-DOF motions with only a single moving part. With the DQ decomposition theory, this positioning stage is modeled as a multi-input multi-output (MIMO) electromechanical system with six inputs (currents) and six outputs (displacements). To achieve high-precision positioning capability, discrete-time integrator-augmented linear-quadratic-regulator (LQR) and reduced-order linearquadratic-Gaussian (LQG) control methodologies are applied. Digital multivariable controllers are designed and implemented on the positioning system, and experimental results are also presented in this paper to demonstrate the stage's dynamic performance.

Accuracy Simulation of Precision Rotary Motion Systems (회전운동 시스템의 정밀도 시뮬레이션 기술)

  • Hwang, Joo-Ho;Shim, Jong-Youp;Hong, Seong-Wook;Lee, Deug-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.285-291
    • /
    • 2011
  • The error motion of a machine tool spindle directly affects the surface errors of machined parts. The error motions of the spindle are not desired errors in the three linear direction motions and two rotating motions. Those are usually due to the imperfect of bearings, stiffness of spindle, assembly errors, external force or unbalance of rotors. The error motions of the spindle have been needed to be decreased to desired goal of spindle's performance. The level of error motion is needed to be estimated during the design and assembly process of the spindle. In this paper, the estimation method for the five degree of freedom (5 D.O.F) error motions of the spindle is suggested. To estimate the error motions of the spindle, waviness of shaft and bearings, external force model was used as input data. And, the estimation models are considering geometric relationship and force equilibrium of the five degree of the freedom. To calculate error motions of the spindle, not only imperfection of the shaft, bearings, such as rolling element bearing, hydrostatic bearing, and aerostatic bearing, but also driving elements such as worm, pulley, and direct driving motor systems, were considered.

Study on the Linear Air Bearing Stage with Actively Controllable Magnetic Preload (초정밀 스테이지를 위한 능동형 자기예압 공기베어링에 관한 연구)

  • Ro S.K.;Park C.H.;Kim S.H.;Kwak Y.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.135-136
    • /
    • 2006
  • A precise linear motion stage supported by magnetically preloaded air bearings is introduced where preloading magnetic actuators are combined with permanent magnets and coils to adjust air bearing clearance by controlling magnetic force actively. Each of the magnetic actuators has a permanent magnet generating nominal magnetic flux for required preload and a coil to perturb the magnetic force resulting adjustment of air-bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate nominal preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder is built for verifying this design concept. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed, and the result shows very good linearity.

  • PDF