• Title/Summary/Keyword: Ag nano-coating

Search Result 35, Processing Time 0.037 seconds

Reflectivity characteristics of Ag nano-crystals grown by electroless plating (무전해 도금에 의해 성장되어진 은 나노결정의 반사율 특성)

  • Kim, Shin-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.218-223
    • /
    • 2013
  • In this study, the reflectivity characteristics of Ag nano-coating grown by electroless plating were investigated in order to use as the reflecting plate of BLU (Back Light Unit) in the LCD (Liquid Crystal Display) or LED (Light Emitting Diode) display equipment. The microstructure of Ag nano-coating was polycrystalline nano-structure that consisted of Ag nano-crystals to be reduced and precipitated, and the size of reduced nano-crystals increased as the thickness of nano-coating increased. The reflectivity of Ag nano-coating in the visible light decreased as the thickness of nano-coating increased and the reduction of reflectivity was more severe in the short wavelength region of visible light. The decrease of reflectivity was closely related to the size of Ag nano-crystal and was thought to be due to the larger surface roughness of larger nano-coating thickness. Therefore, the finer Ag nano-crystals and thinner nano-coating thickness could be favorable for the higher reflectivity of Ag nano-coating grown by electroless plating.

Fabrication and Characterization of Ag-coated BCP Scaffold Derived from Sponge Replica Process (스폰지 복제법을 이용한 Ag 코팅 BCP 지지체의 제조 및 평가)

  • Kim, Min-Sung;Kim, Young-Hee;Song, Ho-Yeon;Min, Young-Ki;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.418-422
    • /
    • 2010
  • As a starting material, BCP (biphasic calcium phosphate) nano powder was synthesized by a hydrothermal microwave-assisted process. A highly porous BCP scaffold was fabricated by the sponge replica method using 60 ppi (pore per inch) of polyurethane sponge. The BCP scaffold had interconnected pores ranging from $100\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To realize the antibacterial property, a microwave-assisted nano Ag spot coating process was used. The morphology and distribution of nano Ag particles were different depending on the coating conditions, such as concentration of the $AgNO_3$ solution, microwave irradiation times, etc. With an increased microwave irradiation time, the amount of coated nano Ag particles increased. The surface of the BCP scaffold was totally covered with nano Ag particles homogeneously at 20 seconds of microwave irradiation time when 0.6 g of $AgNO_3$ was used. With an increased amount of $AgNO_3$ and irradiation time, the size of the coated particles increased. Antibacterial activities of the solution extracted from the Ag-coated BCP scaffold were examined against gram-negative (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus). When 0.6 g of $AgNO_3$ was used for coating the Ag-coated scaffold, it showed higher antibacterial activities than that of the Ag-coated scaffold using 0.8 g of $AgNO_3$.

Microstructure and Synthesis of Ag Spot-coated Cu Nanopowders by Hydrothermal-attachment Method using Ag Colloid (수열흡착법을 이용한 은 점코팅된 구리 나노분말의 합성과 미세조직)

  • Kim, Hyeong-Chul;Han, Jae-Kil
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.546-551
    • /
    • 2011
  • Ag spot-coated Cu nanopowders were synthesized by a hydrothermal-attachment method (HA) using oleic acid capped Ag hydrosol. Cu nano powders were synthesized by pulsed wire exploding method using 0.4 mm in diameter of Cu wire (purity 99.9%). Synthesized Cu nano powders are seen with comparatively spherical shape having range in 50 nm to 150 nm in diameter. The oleic acid capped Ag hydrosol was synthesized by the precipitation-redispersion method. Oleic acid capped Ag nano particles showed the narrow size distribution and their particle size were less than 20 nm in diameter. In the case of nano Ag-spot coated Cu powders, nanosized Ag particles were adhered in the copper surface by HAA method. The components of C, O and Ag were distributed on the surface of copper powder.

Phytogenic silver nanoparticles (Alstonia scholaris) incorporated with epoxy coating on PVC materials and their biofilm degradation studies

  • Supraja, Nookala;Tollamadugu, Naga Venkata Krishna Vara Prasad;Adam, S.
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.281-294
    • /
    • 2016
  • The advantages of nano-scale materials (size 1-99 nm in at least in one dimension) could be realized with their potential applications in diversified avenues. Herein, we report for the first time on the successful synthesis of homogeneous epoxy coatings containing phytogenic silver nanoparticles (Ag) on PVC and glass substrates by room-temperature curing of fully mixed epoxy slurry diluted by acetone. Alstonia scholaris bark extract was used to reduce and stabilize the silver ions. The surface morphology and mechanical properties of these coatings were characterized using the techniques like, UV-Vis (UV-Visible) spectrophotometry, X-ray diffraction (XRD), Fourier transform infrared spectrophotometry (FT-IR), Epifluorescence microscopy and scanning electron microscopy (SEM). The effect of incorporating Ag nanoparticles on the biofilm (scale) resistant epoxy-coated PVC was investigated by total viable counts ($CFU/cm^2$) from epoxy coating from (Initial) $1^{st}$ day to $25^{th}$ days. The phytogenic Ag nanoparticles were found to be significantly improving the microstructure of the coating matrix and thus enhanced the anti-biofilm performance of the epoxy coating. In addition, the antimicrobial mechanism of Ag nanoparticles played an important role in improving the anti-biofilm performance of these epoxy coatings.

Properties of Blocking Layer with Ag Nano Powder in a Dye Sensitized Solar Cell

  • Noh, Yunyoung;Kim, Kwangbae;Choi, Minkyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.105-109
    • /
    • 2016
  • We prepared a working electrode (WE) with a blocking layer (BL) containing 0 ~ 0.5 wt% Ag nano powders to improve the energy conversion efficiency (ECE) of dye sensitized solar cell (DSSC). FESEM and micro-Raman were used to characterize the microstructure and phase. UV-VIS-NIR spectroscopy was employed to determine the adsorption of the WE with Ag nano powders. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with Ag nano powders. From the results of the microstructural analysis, we confirmed that Ag nano powders with particle size of less than 150 nm were dispersed uniformly on the BL. Based on the phase and adsorption analysis, we identified the existence of Ag and found that the adsorption increased when the amount of Ag increased. The photovoltaic results show that the ECE became 4.80% with 0.3 wt%-Ag addition compared to 4.31% without Ag addition. This improvement was due to the increase of the localized surface plasmon resonance (LSPR) of the BL resulting from the addition of Ag. Our results imply that we might be able to improve the efficiency of a DSSC by proper addition of Ag nano powder to the BL.

Evaluation of the cell viability and antimicrobial effects of orthodontic bands coated with silver or zinc oxide nanoparticles: An in vitro study

  • Rashin Bahrami;Maryam Pourhajibagher;lireza Badiei;Reza Masaeli;Behrad Tanbakuchi
    • The korean journal of orthodontics
    • /
    • v.53 no.1
    • /
    • pp.16-25
    • /
    • 2023
  • Objective: We aimed to evaluate the cell viability and antimicrobial effects of orthodontic bands coated with silver or zinc oxide nanoparticles (nano-Ag and nano-ZnO, respectively). Methods: In this experimental study, 30 orthodontic bands were divided into three groups (n = 10 each): control (uncoated band), Ag (silver-coated band), and ZnO (zinc oxide-coated band). The electrostatic spray-assisted vapor deposition method was used to coat orthodontic bands with nano-Ag or nano-ZnO. The biofilm inhibition test was used to assess the antimicrobial effectiveness of nano-Ag and nano-ZnO against Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Biocompatibility tests were conducted using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. The groups were compared using oneway analysis of variance with a post-hoc test. Results: The Ag group showed a significantly higher reduction in the number of L. acidophilus, C. albicans, and S. mutans colonies than the ZnO group (p = 0.015, 0.003, and 0.005, respectively). Compared with the control group, the Ag group showed a 2-log10 reduction in all the microorganisms' replication ability, but only S. mutants showed a 2-log10 reduction in replication ability in the ZnO group. The lowest mean cell viability was observed in the Ag group, but the difference between the groups was insignificant (p > 0.05). Conclusions: Coating orthodontic bands with nano-ZnO or nano-Ag induced antimicrobial effects against oral pathogens. Among the nanoparticles, nano-Ag showed the best antimicrobial activity and nano-ZnO showed the highest biocompatibility.

Microstructures of HAp and HAp-Ag Composite Coating Layer Prepared by RS Magnetron Sputtering (RE Magnetron Sputtering에 의해 제조된 HAp와 HAp-Ag복합코팅층의 미세조직)

  • Lee, Hee-Jung;Oh, Ik-Hyun;Park, Sang-Shik;Lee, Byong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.328-333
    • /
    • 2004
  • Hydroxyapatite (HAp) and HAp-Ag composite layers were coated on ZrO$_2$and Si wafer substrates by RF magnetron sputtering technique. The thickness of coating layers was in the range of 0.7∼1.0$\mu\textrm{m}$ and its roughness was 3∼4nm. The heat treated HAp coating layers were composed with nano-sized crystallines. However, the HAp-Ag composite layers showed the mixed structure with crystalline and amorphous phases. The Ca/P ratio of the as-received HAp coating layer was 1.9, but, the value was decreased as the Ag content with increased. Also, the Vickers hardness of HAp coating layer decreased as the Ag content increase.

A Study of Mechanical Properties and Microstructure of ZrO2-Ag Depending on the Composite Route (ZrO2-Ag의 복합화 공정에 따른 기계적 특성 및 미세조직 평가)

  • Yeo, In-Chul;Han, Jae-Kil;Kang, In-Cheol
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.416-423
    • /
    • 2012
  • This paper introduces an effect of a preparing $ZrO_2$-Ag composite on its mechanical properties and microstructure. In present study, $ZrO_2$-Ag was prepared by reduction-deposition route and wetting dispersive milling method, respectively. Two type of Ag powders (nano Ag and micron Ag size, respectively) were dispersed into $ZrO_2$ powder during wetting dispersive milling in D.I. water. Each sample was sintered at $1450^{\circ}C$ for 2hr in atmosphere, and then several mechanical tests and analysis of microstructure were carried out by bending test, hardness, fracture toughness and fracture surface microstructure. As for microstructure, the Ag coated $ZrO_2$ showed homogeneously dispersed Ag in $ZrO_2$ in where pore defect did not appear. However, $ZrO_2$-nano Ag and $ZrO_2$-micro Ag composite appeared Ag aggregation and its pore defect, which carried out low mechanical property and wide error function value.

Development of Solution-based Carbon Nanotube and Silver Nanowire Coating Technology using Silk Printing Technique (실크 스크린 프린팅 기법을 적용한 용액 기반의 탄소나노튜브와 은 나노 와이어 코팅 기술 개발)

  • Moojin Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.9
    • /
    • pp.33-39
    • /
    • 2023
  • Nano-sized materials can be coated on various substrates, and since this material is transparent and conductive, it can be used as a transparent electrode for electronic devices or an electrode for power supply. In this study, CNT and Ag nanowires were repeatedly coated using the silk screen technique, and samples formed up to 5 times were fabricated, and their optical and electrical properties were measured and analyzed. It was confirmed that marks were formed on the surface of the silkscreen-coated sample according to the coating direction, and the trend of transmittance and surface resistance according to the number of times of coating was investigated. As the number of coatings increased, transmittance and surface resistance tended to decrease. In particular, in the case of transmittance, the range of change was large in the samples coated 2 and 5 times. These changes were confirmed by the Ag nanowire coating. In addition, starting from 700 nm, the previous wavelength region increased according to the wavelength, while the above showed a tendency to decrease. The surface resistance was lowered from 9Ω/cm2 when coating once to 0.856Ω/cm2 when coating five times. It was found that the resistance value was affected by Ag similarly to the permeability. In the future, it is necessary to realize a desired transparent electrode through Ag concentration and coating of Ag nanowires with other methods and fusion with highly transparent CNT to apply to electronic devices.

Rosette Strain Sensors Based on Stretchable Metal Nanowire Piezoresistive Electrodes (신축성 금속 나노선 압저항 전극 기반 로젯 스트레인 센서)

  • Kim, Kang-Hyun;Cha, Jae-Gyeong;Kim, Jong-Man
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.835-843
    • /
    • 2018
  • In this work, we report a delta rosette strain sensor based on highly stretchable silver nanowire (AgNW) percolation piezoresistors. The proposed rosette strain sensors were easily prepared by a facile two-step fabrication route. First, three identical AgNW piezoresistive electrodes were patterned in a simple and precise manner on a donor film using a solution-processed drop-coating of the AgNWs in conjunction with a tape-type shadow mask. The patterned AgNW electrodes were then entirely transferred to an elastomeric substrate while embedding them in the polymer matrix. The fabricated stretchable AgNW piezoresistors could be operated at up to 20% strain without electrical or mechanical failure, showing a maximum gauge factor as high as 5.3, low hysteresis, and high linearity ($r^2{\approx}0.996$). Moreover, the sensor responses were also found to be highly stable and reversible even under repeated strain loading/unloading for up to 1000 cycles at a maximum tensile strain of 20%, mainly due to the mechanical stability of the AgNW/elastomer composites. In addition, both the magnitude and direction of the principal strain could be precisely characterized by configuring three identical AgNW piezoresistors in a delta rosette form, representing the potential for employing the devices as a multidimensional strain sensor in various practical applications.