• Title/Summary/Keyword: Air Traffic Control Simulation

Search Result 36, Processing Time 0.029 seconds

The Effect of Advice Information for Arriving Aircraft Landing Order on Air Traffic Controller's Work Efficiency (도착항공기 착륙순서에 관한 조언정보가 관제사 업무효율에 미치는 영향)

  • Kim, Seyeon;Chai, Hongah;Jung, Hyuntae;Kim, Huiyang;Lee, Keumjin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.3
    • /
    • pp.23-31
    • /
    • 2018
  • This paper describes the effect of advice information for arriving aircraft landing order on the air traffic controller's work efficiency. The air traffic control simulator used in the experiment was modeled on the basis of the aircraft parameters from BADA, gamma-command model and the 4-dimensional trajectory using the Bezier curve. The simulation results show that advice information was helpful for the performance of the work for users who did not have the air traffic control training. On the other hand, in case of users who have experience in air traffic control training, the work efficiency was lowered when the advisory information that does not reflect the user's intention is provided. Therefore, it can be seen that the effect of improving the work efficiency through advice information can be limited depending on the skill level of the air traffic controllers and the complexity of the air traffic situation.

The Study on the Direction of Developing an Aerodrome Traffic Control Simulator for the Air Traffic Controller (항공교통관제사를 위한 국내 비행장 관제시뮬레이터 구현 방향의 연구)

  • Hong, Seung-Beom;Kim, DoHyun
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.114-120
    • /
    • 2014
  • In this paper, we reviews the need and contents of aerodrome control simulator for air traffic controllers' training. In the view of managing the aviation safety, the departure and landing phases of aircraft are very important, because more than 60% of aircraft accidents and incidents have occurred in the take-off and landing phases. According to the benchmark each as practice type, simulation device and fidelity of reality of the air traffic control simulator, we have evaluated the implementation level of the domestic air traffic control simulator and checked up the current simulator's problems through the air traffic controllers' survey. Therefore, we suggest to the direction of developing a HI-FI simulator for aerodrome controllers.

Aircraft 4D Trajectory Model for Air Traffic Control Simulator (항공교통관제 시뮬레이션을 위한 항공기 4D 궤적모델 개발)

  • Jung, Hyuntae;Lee, Keumjin
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.264-271
    • /
    • 2017
  • This paper presents air traffic control simulation model for generating 4D trajectory, and aircraft dynamic model based on 4D trajectory information. With aircraft parameters from BADA and Total Energy Model, the trajectory is defined through modified Bezier curve and the simulation supports two aircraft control methods based on controlled time of arrival (CTA) or airspeed. The simulation results shown that flight time and path were almost identical to the defined trajectory, and derived the differences of each control methods according to wind conditions. Based on the simulation model developed in this study, it is expected to be applied to various air traffic management researches. Future studies will focus on applying optimization techniques in order to minimize the difference between generated trajectories and actual flight routes. This work will increase utilization of developed simulation futhermore.

Air-traffic dispatching scheduling in terminal airspace (공항접근영역 항공교통 Dispatching 스케줄링 연구)

  • Jeong, Sun-Jo;Cho, Doo-Hyun;Choi, Han-Lim
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.973-980
    • /
    • 2016
  • An air traffic management (ATM) has been studied in a variety of fields to utilize an air traffic capacity efficiently and solve a congested air traffic situation due to an increment of an air traffic demand. In this paper, an air traffic management, which is related with controlling and determining the sequencing of an aircraft approaching to an airport, in terminal control area is studied. This paper focuses on scheduling algorithms with a given problem for the air traffic management with operational constraints, such as a space separation, an overtaking on the same air-route, and a route merge point (a scheduling point). For a real-time calculation, the presented algorithms focus on dispatching heuristic rules which are able to assign tasks in a fast time period with an adequate performance, which can be demonstrated as a proper and realistic scheduling algorithm. A simulation result is presented to illustrate the validity and applicability of the proposed algorithm. Each scheduling rule is analyzed on the same static and dynamic air traffic flow scenario with the ATM Monte-Carlo simulation.

A Study on Effect Analysis of Trajectory-Based Arrival Management using Continuous Descent Operations (연속강하운용을 이용한 궤적 기반의 항공기 도착 관리 효과 분석 연구)

  • Eun-Mi Oh;Daekeun Jeon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, we propose trajectory-based arrival management using CDO (Continuos Descent Operations). The operational procedures with TBO (Trajectory-Based Operations) concept were established to allow aircraft and ground system to share the trajectories with each other in real time. The proposed operational concept was validated in the air traffic control simulation environment, which consists of controller working position, pseudo pilot system, air traffic generation system, and controllers' decision support system for arrival management using CDO. Simulation results compared with actual flight data indicate that proposed concept could improve the efficiency of traffic flow management in terms of total descending time and fuel consumption. And it was confirmed that if there is a system that can share and utilize the synchronized trajectory, it can be helpful to control arrival aircraft and apply CDO concept.

Development and Validation of an Improved 5-DOF Aircraft Dynamic Model for Air Traffic Control Simulation (항공교통관제 시뮬레이션을 위한 개선된 5 자유도 항공기 운동 모델 개발 및 검증방안 연구)

  • Kang, Jisoo;Oh, Hyeju;Choi, Keeyoung;Lee, Hak-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.387-393
    • /
    • 2016
  • To perform realistic air traffic control (ATC) simulation in various air traffic situations, an aircraft dynamic model that is accurate and efficient is required. In this research, an improved five degree of freedom (5-DOF) dynamic model with feedback control and guidance law is developed, which utilizes selected performance data and operational specifications from the base of aircraft data (BADA) and estimations using aircraft design techniques to improve the simulation fidelity. In addition, takeoff weight is estimated based on the aircraft type and flight plan to improve simulation accuracy. The dynamic model is validated by comparing the simulation results with recorded flight trajectories. An ATC simulation system using this 5-DOF model can be used for various ATC related research.

Development of Aircraft and Radar Simulation for Air Traffic Control Training System (항공관제 훈련용 항공기 및 레이더 시뮬레이션 시스템 구축)

  • Oh, Hye-Ju;Cho, Sang-Ook;Choi, Keeyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.305-313
    • /
    • 2013
  • This paper presents a simulation system for air traffic control (ATC) training. The structure of the ATC is analyzed to define simulation components to be developed. Requirements that must be satisfied by a training simulator are also identified. The results were reflected in the design of the simulator. The training simulator is composed of three modules same as in real life : air traffic controller, aircraft, radar. Each developed module performs the strict unit tests and combine test based on the scalability, ease, real-time, the operating range of the algorithm derived from the requirements. The simulation system can be connected to an actual ATC, and used to validate the ATC system. At peak load, 1200 aircraft and 30 radars can be operated simultaneously.

A Study On Automatic Control Sector Hand-off Algorithm For Air Traffic Control System Automation (항공관제 시스템 자동화를 위한 자동 관제권 이양 알고리즘 연구)

  • Kim, Yong-Kyun;Won, In-Su;Yun, Jun-Chol;Park, Hyo-Dal
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.4
    • /
    • pp.489-494
    • /
    • 2010
  • According to the recent increase in air traffic more efficient air traffic control automation is required. Aeronautical traffic environment is different from the common traffic environment since it exist controller for control of aircraft And controller have to control jurisdiction hand-off by manual when aircraft move to the other sector. This paper proposes the automatic control jurisdiction hand-off algorithm for efficient air traffic flow management. It is sector distinction algorithm that aircraft move sector to the other sector it recognized sector and then give permission to authorized controller. As a simulation result, so unlilke simply manual control sector hand-off of existing algorithm. we confirmed that proposed algorithm in this paper can do air traffic control more efficiently by performing automatic aircraft. control sector hand-off.

Aerodrome Air Traffic Control Simulator of Promotion for Advanced Ground Safety (지상항공안전증진을 위한 비행장관제시뮬레이터의 고도화)

  • Lee, In Young;Choi, Youn Chul
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.5
    • /
    • pp.497-502
    • /
    • 2014
  • As ground air traffic control at the airport is one of the most important tasks in air transport, attention to the development of a related simulator has expanded all around the world. For this reason, this research describes the characteristics and advantages of this advanced aerodrome traffic control simulator, developed in South Korea, as well as its linkage with A-SMGCS, which is planned to be developed in the future. One of the characteristics of this simulator is that it is possible to train an air traffic controller independently, especially under various conditions such as in different weathers and normal or abnormal circumstances. Therefore, this aerodrome traffic control simulator, through the comprehensive training under various conditions, will contribute to aviation safety and airport capacity enhancement training.

A Study on the Air Traffic Control Rule and Optimal Capacity of Air Base (항공교통관제규칙과 비행장의 최적규모에 관한 연구)

  • Lee Ki-Hyun
    • Journal of the military operations research society of Korea
    • /
    • v.2 no.1
    • /
    • pp.177-184
    • /
    • 1976
  • As the organizational size of a military service or business increases and its management becomes complex, the success in its management depends less on static type of management but more on careful, dynamic type of management. In this thesis, an operations research technique is applied to the problems of determining optimal air traffic control rule and of optimal capacity of air base for a military air base. An airport runway is regarded as the service facility in a queueing mechanism, used by landing, low approach, and departing aircraft. The usual order of service gives priority different classes of aircraft such as landings, departures, and low approaches; here service disciplines are considered assigning priorities to different classes of aricraft grouped according to required runway time. Several such priority rules are compared by means of a steady-state queueing model with non-preemptive priorities. From the survey conducted for the thesis development, it was found that the flight pattern such as departure, law approach, and landing within a control zone, follows a Poisson distribution and the service time follows an Erlang distribution. In the problem of choosing the optimal air traffic control rule, the control rule of giving service priority to the aircraft with a minimum average waiting cost, regardless of flight patterns, was found to be the optimal one. Through a simulation with data collected at K-O O Air Base, the optimal take-off interval and the optimal capacity of aircraft to be employed were determined.

  • PDF