• Title/Summary/Keyword: Air injection

Search Result 1,198, Processing Time 0.033 seconds

Analysis of Measuring Error for Particle Size Analysis by Laser Diffraction Spectrometer (입자크기분석을 위한 레이저회절 분광계의 측정오차 분석)

  • Ha, Sang-An;Son, Heui-Jeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.713-722
    • /
    • 2000
  • This study analysed error of measurement and reproducibility for particle size analysis by the laser diffraction spectrometer. Laser diffraction spectrometers has become a very important method of particle size analysis. This measuring method has the advantage of simple operation, good reproducibility and rapid analysis. A feeding and dispersing system have been developed, which allows mass throughputs between 0.1~23 g/min in flowing air and 1.4~35% in flowing liquid. It has been used as a feeder unit for wet and dry particle size analysis from diffraction patterns. Relevant parameters, such as particle shape, particle size, dispersion, flow rate, concentration were analysed for measuring error. And system parameters of instruments for measurement of dynamic processes, eg, measuring time, focal plane, injection pressure drop and dispersion effect by the ultrasonic and mixing of preliminary treatment, were also discussed.

  • PDF

An study on the ramp tabs for thurst vector control symmetrically installed at the supersonic nozzle exit (초음속 노즐 출구에 대칭적으로 설치한 추력방향제어장치인 램프 탭의 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.32-37
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and schlieren system. This paper provides the thrust spoilage, three directional forces and moments and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

Experimental Investigations on Upper Part Load Vortex Rope Pressure Fluctuations in Francis Turbine Draft Tube

  • Nicolet, Christophe;Zobeiri, Amirreza;Maruzewski, Pierre;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.179-190
    • /
    • 2011
  • The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The influence of outlet bubble cavitation and air injection is also investigated for low cavitation number. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

A study on the manufacturing of motor case assembly for K-PSAM propulsion system by Trans. power molding(TPM) process (유동가압성형(TPM)을 이용한 휴대용 유도무기용 연소관 조립체 제작공정연구)

  • 정상기;윤남균
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.107-115
    • /
    • 1998
  • This paper deals with the study on injection with EPDM(Ethylene propylene dien ter polymer) the gap which narrow, long, and tubular between an ablative composite tube and a steel motor case. Small size motor assembly was designed and manufactured for man-portable air defense propulsion system. Motor assembly is consisted with steel tube, ablative composite tube and insulation rubber. Ablative composite tube was made of carbon/phenolic prepreg by rolling process and insulation rubber was made of EPDM by TPM(Trans-power molding) process. To select the insulation rubber material, we tested ablative insulation property and degradation property at first and we tested fluidity, adhesive property and hardness of EPDM rubber. Finally we designed TPM process to manufacture motor case assembly and the motor case assembly was examined by non-destructive test(X-ray).

  • PDF

A Study on Syngas Co-Combustion Characteristics in a 0.7 MWth Water-Tube Boiler with Single Heavy Oil Burner (중유 싱글 버너 수관식 보일러에서의 합성가스 혼합연소 특성 연구)

  • Choi, Sin-Yeong;Yang, Dong-Jin;Bang, Byoung-Yeol;Yang, Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.452-459
    • /
    • 2010
  • This study is aimed to investigate changes of combustion characteristics and heat efficiency when syngas from gasification process using low-rank fuel such as waste and/or biomass is applied partially to an industrial boiler. An experimental study on syngas co-combustion was performed in a 0.7 MW (1 ton steam/hr) water tube boiler using heavy oil as a main fuel. Three kinds of syngas were used as an alternative fuel: mixture gas of pure carbon monoxide and hydrogen, syngas of low calorific value generated from an air-blown gasification process, and syngas of high calorific value produced from an oxygen-blown gasification process. Effects of co-combustion ratio (0~20%) for each syngas on flue gas composition were investigated through syngas injection through the nozzles installed in the side wall of the boiler and measuring $O_2$, $CO_2$, CO and NOx concentrations in the flue gas. When syngas co-combustion was applied, injected syngas was observed to be burned completely and NOx concentration was decreased because nitrogen-containing-heavy oil was partially replaced by the syngas. However, heat efficiency of the boiler was observed to be decreased due to inert compounds in the syngas and the more significant decrease was found when syngas of lower calorific value was used. However, the decrease of the efficiency was under 10% of the heat replacement by syngas.

A Preliminary Study on Polyester Aluminum Bag as the Possible Substitute for Tedlar Bag Sampler in RSC Analysis (테들러 백 샘플러의 대체 소재로서 폴리에스터 알루미늄 백에 대한 예비연구: 환원황화합물을 중심으로)

  • Kim, Ki-Hyun;Jo, Sang-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.4
    • /
    • pp.454-459
    • /
    • 2011
  • In this study, the recovery rate of Tedlar bag (T) sampler was investigated in comparison to polyester aluminum bag (P) sampler. To derive the comparative data sets for the relative performance between different samplers, a series of calibration experiments were performed by using 1 ppb standard of four offensive reduced sulfur compounds (RSC) odorants ($H_2S$, $CH_3SH$, DMS, and DMDS) along with $SO_2$ and $CS_2$. All the analysis was made by gas chromatography/pulsed flame photometric detector (GC/PFPD) combined with air server/thermal desorber (AS/TD). The measurement data were obtained by loading gaseous standards (1 ppb) at 3 injection volumes (250, 500 and 1,000 mL) at three intervals (0, 24 and 72 hrs). The recovery rates (RR) of P sampler were computed against the slope values of T sampler. According to our analysis, P sampler exhibits slightly enhanced loss relative to T, especially with light RSCs ($H_2S$ and $CH_3SH$). At day 0, RR for the two were 88 and 85%, respectively. Such reduction proceeded rather rapidly in the case of $H_2S$ through time. However, P sampler was more stable to store $SO_2$ unlike others. Despite slightly reduced recovery, P sampler appears as a good replacement of T sampler.

An Experimental Study on the Two Stage Ignition of Cool Flame and Hot Flame in HCCI Engine According to Fuel Composition (연료조성에 따른 HCCI 엔진의 냉염 및 열염의 2단연소 특성에 관한 실험적 연구)

  • 이기형;김형민;류재덕;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthened. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, it is well known that HCCI engines increased HC and CO. Thus, the investigation of combustion characteristics which consists cool and hot flames for HCCI engines were needed to obtain the optimal combustion condition. In this study, combustion characteristics for direct injection type HCCI engine such as quantity of cool flame and hot flame, ignition timing and ignition delay were investigated to clarify the effects of these parameters on performance. The results revealed that diesel combustion showed the two-stage ignition of cool flame and hot flame, the rate of cool flame increase and hot flame decrease with increasing intake air temperature. On the other hand, the gasoline combustion is the single-stage ignition and ignition timing is near the TDC. In addition mixed fuel combustion showed different phenomenon, which depends on the ratio of gasoline component. Ignition timing of mixed fuel is retarded near the TDC and the ignition delay is increased according to ratio of gasoline.

DEVELOPMENT AND IMPLEMENTATION OF DISTRIBUTED HARDWARE-IN-THE-LOOP SIMULATOR FOR AUTOMOTIVE ENGINE CONTROL SYSTEMS

  • YOON M.;LEE W.;SUNWOO M.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.107-117
    • /
    • 2005
  • A distributed hardware-in-the-loop simulation (HILS) platform is developed for designing an automotive engine control system. The HILS equipment consists of a widely used PC and commercial-off-the-shelf (COTS) I/O boards instead of a powerful computing system and custom-made I/O boards. The distributed structure of the HILS system supplements the lack of computing power. These features make the HILS equipment more cost-effective and flexible. The HILS uses an automatic code generation extension, REAL-TIME WORKSHOP$^{ (RTW$^{) of MATLAB$^{ tool-chain and RT-LAB$^{, which enables distributed simulation as well as the detection and generation of digital event between simulation time steps. The mean value engine model, which is used in control design phase, is imported into this HILS. The engine model is supplemented with some I/O subsystems and I/O boards to interface actual input and output signals in real-time. The I/O subsystems are designed to imitate real sensor signals with high fidelity as well as to convert the raw data of the I/O boards to the appropriate forms for proper interfaces. A lot of attention is paid to the generation of a precise crank/ earn signal which has the problem of quantization in a conventional fixed time step simulation. The detection of injection! command signal which occurs between simulation time steps are also successfully compensated. In order to prove the feasibility of the proposed environment, a simple PI controller for an air-to-fuel ratio (AFR) control is used. The proposed HILS environment and I/O systems are shown to be an efficient tool to develop various control functions and to validate the software and hardware of the engine control system.

STUDY OF CORRELATION BETWEEN WETTED FUEL FOOTPRINTS ON COMBUSTION CHAMBER WALLS AND UBHC IN ENGINE START PROCESSES

  • KIM H.;YOON S.;LAI M.-C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.437-444
    • /
    • 2005
  • Unburned hydrocarbon (UBHC) emissions from gasoline engines remain a primary engineering research and development concern due to stricter emission regulations. Gasoline engines produce more UBHC emissions during cold start and warm-up than during any other stage of operation, because of insufficient fuel-air mixing, particularly in view of the additional fuel enrichment used for early starting. Impingement of fuel droplets on the cylinder wall is a major source of UBHC and a concern for oil dilution. This paper describes an experimental study that was carried out to investigate the distribution and 'footprint' of fuel droplets impinging on the cylinder wall during the intake stroke under engine starting conditions. Injectors having different targeting and atomization characteristics were used in a 4-Valve engine with optical access to the intake port and combustion chamber. The spray and targeting performance were characterized using high-speed visualization and Phase Doppler Interferometry techniques. The fuel droplets impinging on the port, cylinder wall and piston top were characterized using a color imaging technique during simulated engine start-up from room temperature. Highly absorbent filter paper was placed around the circumference of the cylinder liner and on the piston top to collect fuel droplets during the intake strokes. A small amount of colored dye, which dissolves completely in gasoline, was used as the tracer. Color density on the paper, which is correlated with the amount of fuel deposited and its distribution on the cylinder wall, was measured using image analysis. The results show that by comparing the locations of the wetted footprints and their color intensities, the influence of fuel injection and engine conditions can be qualitatively and quantitatively examined. Fast FID measurements of UBHC were also performed on the engine for correlation to the mixture formation results.

Defect Diagnosis of Cable Insulating Materials by Partial Discharge Statistical Analysis

  • Shin, Jong-Yeol;Park, Hee-Doo;Lee, Jong-Yong;Hong, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.42-47
    • /
    • 2010
  • Polymer insulating materials such as cross linked polyethylene (XLPE) are employed in electric cables used for extra high voltage. These materials can degrade due to chemical, mechanical and electric stress, possibly caused by voids, the presence of extrinsic materials and protrusions. Therefore, this study measured discharge patterns, discharge phase angle, quantity and occurrence frequency as well as changes in XLPE under different temperatures and applied voltages. To quantitatively analyze the irregular partial discharge patterns measured, the discharge patterns were examined using a statistical program. A three layer sample was fabricated, wherein the upper and lower layers were composed of non-void XLPE, while the middle layer was composed of an air void and copper particles. After heating to room temperature and $50^{\circ}C$ and $80^{\circ}C$ in silicone oil, partial discharge characteristics were studied by increasing the voltage from the inception voltage to the breakdown voltage. Partial discharge statistical analysis showed that when the K-means clustering was carried out at 9 kV to determine the void discharge characteristics, the amount discharged at low temperatures was small but when the temperature was increased to $80^{\circ}C$, the discharge amount increased to be 5.7 times more than that at room temperature because electric charge injection became easier. An analysis of the kurtosis and the skewness confirmed that positive and negative polarity had counterclockwise and clockwise clustering distribution, respectively. When 5 kV was applied to copper particles, the K-means was conducted as the temperature changed from $50^{\circ}C$ to $80^{\circ}C$. The amount of charge at a positive polarity increased 20.3% and the amount of charge at a negative polarity increased 54.9%. The clustering distribution of a positive polarity and negative polarity showed a straight line in the kurtosis and skewness analyses.