• 제목/요약/키워드: Air-turn Bar

검색결과 5건 처리시간 0.019초

A Method for Indentifying Broken Rotor Bar and Stator Winding Fault in a Low-voltage Squirrel-cage Induction Motor Using Radial Flux Sensor

  • Youn, Young-Woo;Hwang, Don-Ha;Sun, Jong-Ho;Kang, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.666-670
    • /
    • 2011
  • In this paper, a method for detecting broken rotor bar and stator winding fault in a low voltage squirrel-case induction motor using an air-gap flux variation analysis is proposed to develop a simple and low cost diagnosis technique. To measure the leakage flux in radial direction, a radial flux sensor is designed as a search coil and installed between stator slots. The proposed method is able to identify two kinds of motor faults by calculating load condition of motors and monitoring abnormal signals those are related with motor faults. Experimental results obtained on 7.5kW three-phase squirrel-cage induction motors are discussed to verify the performance of the proposed method.

Electromotive Force Characteristics of Current Transformer According to the Magnetic Properties of Ferromagnetic Core

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권1호
    • /
    • pp.37-41
    • /
    • 2015
  • The most common structure of the current transformer (CT) consists of a length of wire wrapped many times around a silicon steel ring passed over the circuit being measured. Therefore, the primary circuit of CT consists of a single turn of the conductor, with a secondary circuit of many tens or hundreds of turns. The primary winding may be a permanent part of the current transformer, with a heavy copper bar to carry the current through the magnetic core. However, when the large current flows into a wire, it is difficult to measure its magnitude of current because the core is saturated and the core shows magnetic nonlinear characteristics. Therefore, we proposed a newly designed CT which has an air gap in the core to decrease the generated magnetic flux. Adding the air gap in the magnetic path increases the total magnetic reluctance against the same magnetic motive force (MMF). Using a ferrite core instead of steel also causes the generation of low magnetic flux. These features can protect the magnetic saturation of the CT core compared with the steel core. This technique can help the design of the CT to obtain a special shape and size.

유도전동기 고장모의 시뮬레이터 개발 (Development of Fault-Simulated System for Induction Motors)

  • 황돈하;이기창;강동식;김병국;조원영;조윤현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.182-184
    • /
    • 2006
  • A down-scaled simulator is developed to simulate typical faults in induction motor such as short-turn stator winding, broken rotor bar, dynamic and static air-gap eccentricity, bearing trouble, and mechanical unbalance. The simulator is used as an initial builder to develop design algorithm for real-time faults detecting system by processing an abnormal signal and characteristics in each fault.

  • PDF

Numerical Analysis for Characterization of Single Phase Induction Motors by using Circuit Equations Coupled with Magnetic Field Distribution

  • Kim, Young Sun;Lee, Dong Yoon
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.255-259
    • /
    • 2013
  • In this paper a new coupling method for efficient and simple analysis of single phase induction motor is presented. The circuit representation of both the stator winding and each conducting rotor loop (composed of rotor bar and end ring segment) is used in conjunction with the distribution of magnetic flux linkage instead of inductance matrix. The flux linkage is calculated using air-gap flux density distributions driven by unit currents in the stator windings and rotor bars. The field distribution of one turn of a coil is calculated by FEM and the result is used to calculate total flux linkage by employing a coordinate transformation. The numerical results give good agreement with prior literature. The method is particularly effective in analyzing the effect of the number of rotor bars.