• Title/Summary/Keyword: Airborne Camera

Search Result 45, Processing Time 0.017 seconds

A Study of Alignment Tolerance's Definition and Test Method for Airborne Camera (항공기 탑재용 카메라 정렬오차 정의 및 시험방안 연구)

  • Song, Dae-Buem;Yoon, Yong-Eun;Lee, Hang-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.154-159
    • /
    • 2013
  • Alignment tolerance for EO/IR airborne camera using common optic is an important factor in stabilization accuracy and geo-pointing accuracy. Before airborne camera is mounted on the aircraft, defining alignment tolerance and verification of it is essential in production as well as research and development. In this paper we establish basic concept on the definition and elements of alignment tolerance for airborne camera and propose how to measure each of those elements. Components and the measurement sequence of alignment tolerance are as follows: 1) tolerance of alignment between EO and IR LOS. 2) tolerance of sensor alignment. 3) tolerance of position reporting accuracy. 4) tolerance of mount alignment

A Study of Test Method for Position Reporting Accuracy of Airborne Camera (항공기 탑재용 카메라 위치출력오차 측정방안 연구)

  • Song, Dae-Buem;Yoon, Yong-Eun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.646-652
    • /
    • 2013
  • PRA(Position Reporting Accuracy) for EO/IR(Electro-Optic/Infrared) airborne camera is an important factor in geo-pointing accuracy. Generally, rate table is used to measure PRA of gimbal actuated camera like EO/IR. However, it is not always possible to fix an EUT(Equipment for Under Test) to rate table due to capacity limit of the table on the size and weight of the object(EUT). Our EO/IR is too big and heavy to emplace on it. Therefore, we propose a new verification method of PRA for airborne camera and assess the validity of our proposition. In this method we use collimator, angle measuring instrument, 6 dof motion simulator, optical surface plate, leveling laser, inclinometer and poster(for alignment).

Method Development for Estimating Concentration of Airborne Fungi Using a Thermal Imaging Camera (열화상 카메라를 이용한 공기 중 부유 진균 농도 추정방법 개발에 관한 연구)

  • Kim, Ki Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.4
    • /
    • pp.465-471
    • /
    • 2015
  • Objectives: An objective of this study is to apply a thermal image camera which shows various color according to temperature of indoor surface for estimating concentration of airborne fungi. Materials and Methods: While wall temperature were monitored by applying the thermal image camera, airborne bacteria as well as air temperature and relative humidity have been measured in lecture room and toilet of university for seven months. Results: Based on the results obtained from this study, the ranges of temperature and airborne fungi concentration were $20{\sim}24^{\circ}C$ and $20{\sim}400cfu/m^3 $ for red image, $17.5{\sim}20^{\circ}C$ and $35{\sim}150cfu/m^3$ for orange image, $15.5{\sim}17.5^{\circ}C$ and $25{\sim}650cfu/m^3$ for sky-blue image, and $13.5{\sim}15.5^{\circ}C$ and $50{\sim}200cfu/m^3$ for blue image, respectively. The color of indoor surface taken shot by thermal image camera showed consistent trend with temperature of indoor surface. There is, however, little correlation between color of indoor surface and airborne fungi concentration(p>0.05). Among environmental factors, relative humidity in indoor air showed a significant relationship with airborne fungi concentration(p<0.05). Conclusions: The more measurement data for proving statistically an association between color of indoor surface and airborne fungi concentration should be provided to easily estimate indoor level of airborne fungi.

Performance Improvement Technique of Long-range Target Information Acquisition for Airborne IR Camera

  • Yang, Hyun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.39-45
    • /
    • 2017
  • In this paper, we propose three compensation methods to solve problems in high-resolution airborne infrared camera and to improve long-range target information acquisition performance. First, image motion and temporal noise reduction technique which is caused by atmospheric turbulence. Second, thermal blurring image correction technique by imperfect performance of NUC(Non Uniformity Correction) or raising the internal temperature of the camera. Finally, DRC(Dynamic Range Compression) and flicker removing technique of 14bits HDR(High Dynamic Range) infrared image. Through this study, we designed techniques to improve the acquisition performance of long-range target information of high-resolution airborne infrared camera, and compared and analyzed the performance improvement result with implemented images.

Accuracy Analysis of Aerial Triangulation Using Medium Format CCD Camera RCD105 (중형카메라의 항공삼각측량 정확도 분석)

  • Kang, Joon-Mook;Won, Jae-Ho;So, Jae-Kyeong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.251-252
    • /
    • 2010
  • Lately, airborne digital camera and airborne laser scanner in field of airborne surveying is used to build geography information such as DEM generation and terrain analysis. In this study, 3D position accuracy is compared medium format CCD camera RCD105 with high resolution airborne digital camera DMC. For this, test area was decided for aerial photograph and ground control points was selected in 1/1,000 scale digital map. In Result, Root Mean Square Error(RMSE) was analyzed between RCD105 and DMC after aerial triangulation.

  • PDF

Calibration and accuracy evaluation of airborne digital camera images (항공기용 디지털 영상에 대한 검정(Calibration) 및 정확도 평가)

  • 이승헌;위광재;이강원;이홍술
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.183-195
    • /
    • 2004
  • Photogrammetry is one of the most important sources of GIS application. Nowadays, color photos are used and camera is integrated with GPS/INS sensors. However the photos are still taken from analogue camera and scanned for digital image. For the convenient and accurate image application especially for 3D, airborne digital camera images is essential. In this paper, digital image calibration process with GPS/INS and its accuracy evaluation was presented.

  • PDF

Development and Verification of the Compact Airborne Imaging Spectrometer System

  • Lee, Kwang-Jae;Yong, Sang-Soon;Kim, Yong-Seung
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.397-408
    • /
    • 2008
  • A wide variety of applications of imaging spectrometer have been proved using data from airborne systems. The Compact Airborne Imaging Spectrometer System (CAISS) was jointly designed and developed as the airborne hyperspectral imaging system by Korea Aerospace Research Institute (KARI) and ELOP inc., Israel. The primary mission of the CAISS is to acquire and provide full contiguous spectral information with high spatial resolution for advanced applications in the field of remote sensing. The CAISS consists of six physical units; the camera system, the gyro-stabilized mount, the jig, the GPS/INS, the power inverter and distributor, and the operating system. These subsystems are to be tested and verified in the laboratory before the flight. Especially the camera system of the CAISS has to be calibrated and validated with the calibration equipments such as the integrating sphere and spectral lamps. To improve data quality and its availability, it is the most important to understand the mechanism of imaging spectrometer system and the radiometric and spectral characteristics. The several performance tests of the CAISS were conducted in the camera system level. This paper presents the major characteristics of the CAISS, and summarizes the results of performance tests in the camera system level.

Updating Building Layer of Digital Map Using Airborne Digital Camera Image (디지털항공영상을 이용한 수치지도의 건물레이어 갱신)

  • Hwang, Won-Soon;Kim, Kam-Rae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.31-39
    • /
    • 2007
  • As the availability of images from airborne digital camera with high resolution is expanded, a lot of concern are shown about the production of orthoimage and digital map. This study presents the method of updating digital map using orthoimage from airborne digital camera image. Images were georectified using GPS surveying data. For the generation of orthoimage, Lidar DEM was used. The absolute positional accuracy of orthoimage was evaluated using GPS surveying data. And that of the building layer of digital map was estimated using the existed digital map at the scale of 1:1,000. The absolute positional accuracy of orthoimage was as followed: RMSE in X and Y were ${\pm}0.076m$ and ${\pm}0.294m$. The RMSE of the building layer were ${\pm}0.250m$ and ${\pm}0.210m$ in X and Y directions, respectively. The RMSE of the digital map using orthoimage from Aerial Digital Camera image fell within allowable error range established by NGII. Consequently, updating digital map using orthoimage from Aerial Digital Camera image can be applied to various fields including the construction of the framework data and the GIS of local government.

  • PDF

The application of airborne laser mapping for powerline path (항공레이저 측량기술의 송전선로 경과지 선정 활용방안)

  • 김승용;위광재;김갑진;이강원
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.485-490
    • /
    • 2004
  • Airborne laser mapping is the latest and fastest method for generating 3D data. By now, elevation data was mainly acquired using air photos. But this way takes long time from land control surveying to digital visualization. Airborne laser mapping does not need any ground control after system calibration. In this paper, power line and electric tower areas were measured. And using the 3D laser result and digital camera images, contour lines and mosaic images was generated and the accuracy was presented. Airborne laser mapping and digital camera have a full capacity to substitute existing methods for electric and landscape works.

  • PDF

Laboratory Test Method for the Forward Motion Compensation of Airborne Camera (항공용 카메라 전방운동 보상기능의 실험실 입증방안)

  • Song, Dae-Buem;Yoon, Yong-Eun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.507-512
    • /
    • 2012
  • Image blurring in airborne camera can be prevented through timely actuation of LOS(Line of Sight) into the opposite direction to the aircraft advancement, i.e. FMC(Forward motion compensation). Performance verification of FMC requires installation of camera to the aircraft. However, in many ways the verification process has little choice but to be implemented in the laboratory. In this paper verification method of FMC performance in the laboratory is introduced. With collimator target installed in the known reference position image obtained by actual mission plan naturally displays image blurring as well as LOS displacement by FMC effect. Through comparison of the amount of those image blurring and LOS displacement to the equivalent image distortion expected by the application of the FMC reference command can the performance be verified. In this paper we propose a new verification method of FMC performance in laboratory along with generalized solution of FMC reference command, and assess the validity of our proposition.