• Title/Summary/Keyword: Airlift loop bioreactor

Search Result 2, Processing Time 0.016 seconds

Removal of Volatile Organic Compounds using Candida tropicalis Immobilized on Polymer Gel Media in an Airlift Loop Bioreactor (Candida tropicalis 포괄고정 담체를 적용한 Airlift Loop Bioreactor에서의 복합 휘발성유기화합물 제거)

  • NamGung, Hyeong-Kyu;Ha, Jeong-Hyub;Hwang, Sun-Jin;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.603-610
    • /
    • 2009
  • This research was performed to improve removal efficiency of toluene and methyl ethyl ketone (MEK) using Candida tropicalis, one of the yeast species. An airlift loop bioreactor (ALB) was employed to enhance the capability of mass transfer for toluene and MEK from the gas phase to the liquid, microbial phase. Polymer gel media made from PAC, alginate and PEG was applied for the effective immobilization of the yeast strain on the polymer gel media. The experimental results indicated that the mass transfer coefficient of toluene without polymer gel media was 1.29 $min^{-1}$ at a gas retention time of 15 sec, whereas the KLa value for toluene was increased to 4.07 $min^{-1}$ by adding the media, confirming the enhanced mass transfer of volatile organic compounds between the gas and liquid phases. The removal efficiency of toluene and MEK by using yeast-immobilized polymer gel media in the ALB was greater than 80% at different pollutant loading rates (5, 10, 19 and 37 g/$m^3$/hr for toluene, 4.5, 8.9, 17.8 and 35.1 g/$m^3$/hr for MEK). In addition, an elimination capacity test conducted by changing inlet loading rates stepwise demonstrated that maximum elimination capacities for toluene and MEK were 70.4 and 56.4 g/$m^3$/hr, respectively.

Production of Itaconic Acid at Various Bioreactors (다양한 생물반응기에서 이타콘산의 생산)

  • 박승원;김승옥;이진석
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.304-308
    • /
    • 1994
  • A suitable culture method and bioreactor type for itaconic acid production were chosen by comparing the maximal concentration of itaconic acid produced in various systems. In batch culture, the maximal concentration of itaconic acid produced in a bubble column reactor was about 5% greater than that produced in stirred-tank or external-loop airlift reactor. These results were thought to be due to lower shear force and higher mass transfer efficiency in a bubble column reactor in comparison with other reactors. Moreover, the fed-batch mode in a bubble column was found to be a suitable one, producing about 25% higher concentration of itaconic acid compared to batch mode.

  • PDF