• Title/Summary/Keyword: AlA

Search Result 18,865, Processing Time 0.053 seconds

Preparation of Aluminum Nitride from an Alkoxide and its Properties (알콕사이드로부터 AlN분말의 합성 및 분말 특성)

  • 이홍림;박세민;조덕호
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.100-108
    • /
    • 1989
  • Aluminum hydroxides were prepared by the alkoxide hydrolysis method using Al-isopropoxide as a starting material and NH4OH as a catalytic agent. When Al-isopropoxide was hydrolyzed in a H2O-NH3 system, only Al(OH)3 was obtained over all pH values. However, AlOOH was formed besides Al(OH)3 when Al-isopropoxide was hydrolyzed in a H2O-NH3-isopropyl alcohol system. The AlOOH/Al(OH)3 ratio was increased as the isopropyl alcohol content was increased. The hydroxides, Al(OH)3 and AlOOH, obtained in this study and the commerical products, $\alpha$-Al2O3 and AlOOH were subjected to the carbothermal reduction and nitridation reaction to product AlN powder, using carbon black as a reducing agent under N2 atmosphere at various temperatures. AlN was synthesized from the obtained Al(OH)3 and the commercial AlOOH at 145$0^{\circ}C$, however, synthesized from the obtained AlOOH and the commercial alpha-alumina at 135$0^{\circ}C$. The temperature difference is assumed to be attributed to the reactivity of those powders. AlN powder prepared from the Al-isopropoxide was observed to have the narrower particle size distribution than that prepared from the commercial $\alpha$-Al2O3 or AlOOH.

  • PDF

Microstructures and Texture of Al/Al2O3 Composites Fabricated by a Powder-in Sheath Rolling Method (분말시스압연법에 의해 제조한 Al/Al2O3 복합재료의 미세조직 및 집합조직)

  • 이성희;이충효
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.103-107
    • /
    • 2003
  • Aluminum-based $Al/Al_2O_3$ composites were fabricated by a powder-in sheath rolling method. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1 mm was used as a sheath. A mixture of aluminum powder and $Al_2O_3$ particles of which volume content was varied from 5 to 20%, was filled in the tube by tap filling and then rolled by 75% reduction in thickness at ambient temperature. The rolled specimen was then sintered at 56$0^{\circ}C$ for 0.5 h. The mixture of Al powders and $Al_2O_3$ particles was successfully consolidated by the sheath rolling. The $Al/Al_2O_3$ composite fabricated by the sheath rolling showed a recrystallized structure, while unreinforced Al powder compact fabricated by the same procedure showed a deformed structure. The unreinforced Al powder compact was characterized by a deformation (rolling) texture of which main component is {112}<111>, while the $Al/Al_2O_3$ composite showed a mixed texture oi deformation and recrystallization. The sintering resulted in recrystallization in Al powder compact and grain growth in the composite.

Effect of Aluminium Content on High Temperature Deformation Behavior of TiAl Intermetallic Compound

  • Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.398-402
    • /
    • 2015
  • Fundamental studies of microstructural changes and high temperature deformation of titanium aluminide (TiAl) were conducted from the view point of the effect of Al content in order to develop the manufacturing process of TiAl. Microstructures in an as cast state consisted mainly of lamellar structure irrespective of Al content. By homogenization at 1473 K, the microstructures of Ti-49Al and Ti-51Al were transformed into an equiaxial structure which was composed of ${\gamma}$-TiAl, while the lamellar structure that was observed in Ti-46Al and Ti-47Al was much more stable. We found that the reduction of Al content suppressed the formation of equiaxial grains and resulted in a microstructure of only a lamellar structure. On Ti-49Al and Ti-51Al, dynamic recrystallization occurred during high temperature deformation, and the microstructure was transformed into a fine equiaxial one, while the microstructures of Ti-46Al and Ti-47Al contained few recrystallized grains and consisted mainly of a deformed lamellar structure. We observed that on the low-Al alloys the lamellar structure under hard mode deformation conditions deformed as kink observed B2-NiAl. High temperature deformation characteristics of TiAl were strongly affected by Al content. An increase of Al content resulted in a decrease of peak stress and activation energy for plastic deformation and an increase of the recrystallization ratio in TiAl.

SULFIDATION PROCESSING AND Cr ADDITION TO IMPROVE OXIDATION RESISTANCE OF Ti-Al INTERMETALLIC COMPOUNDS AT ELEVATED TEMPERATURES

  • Narita, Toshio;Izumi, Takeshi;Yatagai, Mamoru;Yoshioka, Takayuki
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.05a
    • /
    • pp.5-5
    • /
    • 1999
  • A novel process is proposed to improve oxidation resistance of Ti-Al intermetallic compounds at elevated temperatures by both Cr addition and pre-sulfidation, where TiAl alloys withlor without Cr addition were sulfidized at 1173K for 86.4ks at a 1.3 Pa sulfur partial pressure in a $H_2-H_2S$ gas mixture. The pre-sulfidation treatment formed a thin Cr-Al alloy layer as well as 7~10 micrometer $TiAl_3$ and $TiAl_2$ layer, due to selective sulfidation of Ti. Oxidation resistance of the pre-sulfidation processed TiAl 4Cr alloy was examined under isothermal and heat cycle conditions between room temperature and 1173K in air. Changes in $TiAl_3$ into $TiAl_2$ and then TiAl phases as well as their effect on oxidation behavior were investigated and compared with the oxidation behavior of the TiAl-4Cr alloy as TiAl and pre-sulfidation processed TiAl aHoys. After oxidation for up to 2.7Ms a protective $Al_2O_3$ scale was formed, and the pre-formed $TiAl_3$ changed into $TiAl_2$ and the $Al_2Cr$ phase changed into a CrAlTi phase between the $Al_2O_3$ scale and $TiAl_2$ layer. The pre-sulfidation processed TiAl-4Cr alloy had very good oxidation resistance for longer times, up to 2.7 Ms, in contrast to those observed for the pre-sulfidation processed TiAl alloy where localized oxidation occurred after 81 Oks and both the TiAl and TiAl-4Cr alloys themselves corroded rapidly from the initial stage of oxidation

  • PDF

Effects of Oxide Additions on Mechanical Properties and Microstructures of AlN Ceramics Prepared from Al-isopropoxide (Al-isopropoxide로부터 제조한 AlN 세라믹스의 기계적 성질과 미세구조에 미치는 산화물 첨가제의 영향)

  • 이홍림;황해진
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.799-807
    • /
    • 1990
  • In this study, effects of oxide additives on mechanical properties and microstructure of A1N and A1N polytype ceramics were investigated. Fine A1N powder was synthesized by nitriding alumiuim hydroxide prepared from Al-isopropoxide, at 1350$^{\circ}C$ for 10h in N2 atmosphere. By adding 3w/o Y2O3, 0.56w/o CaO, and 10w/o SiO2 to AlN powder, AlN and AlN polytype ceramics were prepared by hot-pressing under the pressure of 30 MPa at 1800$^{\circ}C$ for 1h. AlN ceramics with no additives formed considerable amount of AlON phase, while AlN ceramics doped with Y2O3 or CaO decreased AlON phase and formed Y-Al or Ca-Al oxide compound. AlN+10w/o SiO2(+3w/o Y2O3) composition produced AlON and AlN polytype compound having 21R as a major phase. Room temperature flexural strength of AlN ceramics with no additive was 246MPa, and room temperature flexural strength and critical temperature difference by thermal shock(ΔTc) of AlN ceramics dooped with Y2O3 or CaO were 532MPa/340$^{\circ}C$ and 423MPa/300$^{\circ}C$, respectively. Y2O3 and CaO used as sintering agent played roles of densification and oxygen removal of AlN ceramics, and affected grain growth/grain morphologies of AlN ceramics.

  • PDF

Milling and Particulate Characteristics of Al Alloy-Al2O3 Powder Mixtures for Reaction-Bonded Al2O3(RBAO) Process

  • Lee, Hyun-Kwuon
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.574-579
    • /
    • 2013
  • The milling and particulate characteristics of Al alloy-$Al_2O_3$ powder mixtures for a reaction-bonded $Al_2O_3$ (RBAO) process were studied. A commercially available prealloyed Al powder with Zn, Mg, Cu and Cr alloying elements (7475 series) was mixed with a calcined sinter-active $Al_2O_3$ powder and then milled in centrifugal milling equipment for ~48 hrs. The Al alloy-$Al_2O_3$ powder mixtures after milling were characterized and evaluated in various ways to reveal their particulate characteristics during milling. The milling efficiency of the Al alloy increased with a longer milling time. Comminution of the Al alloy particles started with its elongation, showing a high aspect ratio. With a longer milling time, the elongated Al alloy particle changed in terms of its shape and size, becoming equiaxially fine particles. Regardless of the milling efficiency of the Al alloy particles, all of the Al alloy particles repeatedly experienced strong plastic deformation during milling, giving rise to higher density of surface defects, such as microcracks, and leading to higher residual microstress within the Al alloy particles. The chemical reactions, oxidation behavior and hydration behavior of the Al alloy particles and the hydrolysis characteristics of their reaction with the environment were also observed during the milling process and during the subsequent powder handling steps.

A Study on the Phase Transformations of (TiAl)N Films Deposited by TFT Sputtering System (TFT(Two-Facing-Targets) 스퍼터장치에 의해 증착된 (TiAl)N 박막의 상변태에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.5
    • /
    • pp.281-287
    • /
    • 2005
  • Titanium aluminium nitride((TiAl)N) film is anticipated as an advanced coating film with wear resistance used for drills, bites etc. and with corrosion resistance at a high temperature. In this study, (TiAl)N thin films were deposited both at room temperature and at elevated substrate temperatures of 573 to 773 K by using a two-facing-targets type DC sputtering system in a mixture Ar and $N_2$ gases. Atomic compositions of the binary Ti-Al alloy target is Al-rich (25Ti-75Al (atm%)). Process parameters such as precursor volume %, substrate temperature and Ar/$N_2$ gas ratio were optimized. The crystallization processes and phase transformations of (TiAl)N thin films were investigated by X-ray diffraction, field-emission scanning electron microscopy. The microhardness of (TiAl)N thin films were measured by a dynamic hardness tester. The films obtained with Ar/$N_2$ gas ratio of 1:3 and at 673 K substrate temperature showed the highest microhardness of $H_v$ 810. The crystallized and phase transformations of (TiAl)N thin films were $Ti_2AlN+AlN{\rightarrow}TiN+AlN$ for Ar/$N_2$ gas ratio of 1:3, $Ti_2AlN+AlN{\rightarrow}TiN+AlN{\rightarrow}Ti_2AlN+TiN+AlN$ for Ar/$N_2$ gas ratio of 1:1 and $TiN+AlN{\rightarrow}Ti_2AlN+TiN+AlN{\rightarrow}Ti_2AlN+AlN{\rightarrow}Ti_2AlN+TiN+AlN$ for Ar/$N_2$ gas ratio of 3:1. The above results are discussed in terms of crystallized phases and microhardness.

Changes on the Microstructure of an Al-Cu-Si Ternary Eutectic Alloy with Different Mold Preheating Temperatures (금형 예열온도에 따른 Al-Cu-Si 3원계 공정합금의 미세조직 변화)

  • Oh, Seung-Hwan;Lee, Young-Cheol
    • Journal of Korea Foundry Society
    • /
    • v.42 no.5
    • /
    • pp.273-281
    • /
    • 2022
  • In order to understand the solidification behavior and microstructural evolution of the Al-Cu-Si ternary eutectic alloy system, changes of the microstructure of the Al-Cu-Si ternary eutectic alloy with different cooling rates were investigated. When the mold preheating temperature is 500℃, primary Si and Al2Cu dendrites are observed, with (α-Al+Al2Cu) binary eutectic and needle-shaped Si subsequently observed. In addition, even when the mold preheating temperature is 300℃, primary Si and Al2Cu dendrites can be observed, and both (α-Al+Al2Cu+Si) areas observed and areas not observed earlier appear. When the mold preheating temperature is 150℃, bimodal structures of the binary eutectic (α-Al+Al2Cu) and ternary eutectic (α-Al+Al2Cu+Si) are observed. When the preheating temperature of the mold is changed to 500℃, 300℃, and 150℃, the greatest change is in the Si phase, and upon reaching the critical cooling rate, the ternary eutectic of (α-Al+Al2Cu+Si) forms. If the growth of the Si phase is suppressed upon the formation of (α-Al+Al2Cu+Si), the growth of both Al and Cu is also suppressed by a cooperative growth mechanism. As a result of analyzing the Al-27wt%Cu-5wt%Si ternary eutectic alloy with a different alloy design simulation programs, it was confirmed that different results arose depending on the program. A computer simulation of the alloy design is a useful tool to reduce the trial and error process in alloy design, but this effort must be accompanied by a task that increases reliability and allows a comparison to microstructural results derived through actual casting.

Growth Characteristics of AlN by Plasma-Assisted Molecular Beam Epitaxy with Different Al Flux (플라즈마분자선에피탁시법을 이용한 알루미늄 플럭스 변화에 따른 질화알루미늄의 성장특성)

  • Lim, Se Hwan;Lee, Hyosung;Shin, Eun-Jung;Han, Seok Kyu;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.539-544
    • /
    • 2012
  • We have grown AlN nanorods and AlN films using plasma-assisted molecular beam epitaxy by changing the Al source flux. Plasma-assisted molecular beam epitaxy of AlN was performed on c-plane $Al_2O_3$ substrates with different levels of aluminum (Al) flux but with the same nitrogen flux. Growth behavior of AlN was strongly affected by Al flux, as determined by in-situ reflection high energy electron diffraction. Prior to the growth, nitridation of the $Al_2O_3$ substrate was performed and a two-dimensionally grown AlN layer was formed by the nitridation process, in which the epitaxial relationship was determined to be [11-20]AlN//[10-10]$Al_2O_3$, and [10-10]AlN//[11-20]$Al_2O_3$. In the growth of AlN films after nitridation, vertically aligned nanorod-structured AlN was grown with a growth rate of $1.6{\mu}m/h$, in which the growth direction was <0001>, for low Al flux. However, with high Al flux, Al droplets with diameters of about $8{\mu}m$ were found, which implies an Al-rich growth environment. With moderate Al flux conditions, epitaxial AlN films were grown. Growth was maintained in two-dimensional or three-dimensional growth mode depending on the Al flux during the growth; however, final growth occurred in three-dimensional growth mode. A lowest root mean square roughness of 0.6 nm (for $2{\mu}m{\times}2{\mu}m$ area) was obtained, which indicates a very flat surface.

A Study on the Interfacial Bonding in AlN Ceramics/Metals Joints: I. Residual Stress Analysis of AlN/Cu and AlN/W Joints Produced by Active-Metal Brazing (AlN 세라믹스와 금속간 계면접합에 관한 연구 : I. AlN/Cu 및 AlN/W 활성금속브레이징 접합체의 잔류응력 해석)

  • Park, Sung-Gye;Lee, Seung-Hae;Kim, Ji-Soon;You, Hee;Yum, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.962-969
    • /
    • 1999
  • Elastic and elasto-plastic stress analyses of AlN/Cu and AlN/W pints produced by active-metal brazing method using Ag-Cu-Ti insert-metal were performed with use of Finite-Element-Method(FEM). The results of stress analyses were compared with those from the pint strength tests and the observations of fracture behaviors. It was shown that a remarkably larger maximum principal stress is built in the AlN/Cu pint compared to the A1N/ W joint. Especially, the stress concentration with tensile component was confirmed at the free surface close to the bonded interface of AlN/Cu. The elasto-plastic analysis under consideration of stress relaxation effect of Ag-Cu-Ti insert possessing a so-called 'soft-metal effect' showed that the insert leads to a lowering of maximum principal stress in AlNiCu pint, even though an increase of the insert thickness above 100$\mu\textrm{m}$ could not bring its further decrease. The maximum pint strengths measured by shear test were 52 and 108 MPa for AlNiCu and AlN/W pints. respectively. Typical fractures of AlN/Cu pints occurred in a form of 'dome' which initiated from the free surface of AlN close to the bonded interface and proceeded towards the AlN inside forming a large angle. AlN/W pints were usually fractured at AlN side along the interface of AlN/insert-metal.

  • PDF