• Title/Summary/Keyword: AlZnMg-alloy

Search Result 180, Processing Time 0.029 seconds

Age Hardening and Mechanical Property of Extruded Al-Zn-Mg-(Cu) Al Alloys with Sc addition (Sc 첨가된 Al-Zn-Mg-(Cu)계 알루미늄 합금 압출재의 시효 경화 거동과 기계적 성질)

  • Shim, Sung Yong;Lim, Su Gun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.5
    • /
    • pp.243-249
    • /
    • 2007
  • The age hardening behavior and mechanical properties of an extruded Al-Zn-Mg-(Cu)-0.1 wt.%Sc alloy were investigated with the Sc addition and ageing temperature. The results showed that the $Al_3Sc$ compounds were formed by Sc addition and distributed preferentially along the extrusion direction. The age hardening of Al-Zn-Mg-Cu-0.1 wt.%Sc alloy which was treated by T6 process was more significant than that of Al-Zn-Mg-0.1 wt.%Sc alloy. The tensile property of Al-Zn-Mg-Cu+0.1 wt.%Sc alloy was also higher than that of Al-Zn-Mg-0.1 wt.%Sc alloy, which is 691 MPa and 584 MPa in strength and 9% and 11% in elongation, respectively.

The Aging Characteristics of Mg-6 wt.% Al-1 wt.% Zn Alloy Prepared by Gas Atomization (가스분사법으로 제조된 Mg-6 wt.% Al-1 wt.% Zn 합금의 시효특성)

  • Lee, Du-Hyung;Kim, Bo-Sik;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.275-279
    • /
    • 2009
  • The aging characteristics of gas atomized Mg-6 wt.% Al-1 wt.% Zn alloy were investigated and compared to those of cast Mg-6 wt.% Al alloy. The gas atomized Mg-6 wt.% Al-1wt.% Zn alloy powders had spherical morphology between 1 and 100 $\mu m$ in diameter. After compaction under the pressure of 700 MPa at $320^{\circ}C$ for 10 min, the Mg-6 wt.% Al-1 wt.% Zn alloy showed a grain size of approximately 40 $\mu m$ which is smaller than that of the cast Mg-6 wt.% Al alloy, and a relative compact density of approximately 93%. After ageing, the Mg-6 wt.% Al-1 wt.% Zn alloy showed much faster peak hardness than cast Mg-6 wt.% Al alloy. The Mg-6 wt.% Al-1 wt.% Zn alloy showed the new fine precipitations with ageing time, while the cast Mg-6 wt.% Al alloy was almost similar morphology.

Precipitation Behavior of Al-Zn-Mg-Cu-(Sc) Alloy (Al-Zn-Mg-Cu-(Sc) 합금의 석출특성)

  • Choi, G.S.;Mun, H.J.;Woo, K.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.5
    • /
    • pp.257-261
    • /
    • 2006
  • Scandium(Sc) in Al-Zn-Mg-Cu based Al alloy on precipitation phenomenon was compared to a 7001(Al-7.2%Zn-3.2%Mg-1.8%Cu) Al alloy. GP zone and ${\eta}^{\prime}$ phases were the main strengthening phases at low aging temperature under $100^{\circ}C$, but ${\eta}^{\prime}$ and $Al_3Sc$ phases were the main strengthening phases at high aging temperature above $1600^{\circ}C$ in Sc added 7000(Al-7.7%Zn-2.0%Mg-1.9%Cu-0.1%Zr) Al alloy. With the addition of 0.1%Sc in 7000 Al alloy, the activation energy for the GP zone, ${\eta}^{\prime}$ and ${\eta}$ phase decreased compared to the 7001 Al alloy. This result indicates that the Sc accelerated the precipitation for the GP zone, ${\eta}^{\prime}$ and ${\eta}$ phases in 7000 Al alloy. Al-7.7%Zn-2.0%Mg-1.9%Cu-0.1%Zr-0.1 Sc alloy has higher strength than 7001 Al alloy, which has high strength.

Effects of Zn Addition on Hardness and Microstructure of Discontinuous Precipitates in Isothermally Aged Mg-Al-(Zn) Alloys (등온 시효한 Mg-Al-(Zn) 합금에서 불연속 석출물의 경도와 미세조직에 미치는 Zn 첨가의 영향)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.4
    • /
    • pp.177-184
    • /
    • 2022
  • The present study aims to investigate the influence of Zn addition on hardness and microstructural characteristics of discontinuous precipitates (DPs) formed by isothermal aging in Mg-9%Al and Mg-9%Al-1%Zn alloys. To obtain large DPs volume fractions in the microstructure, the alloy specimens were solution-treated at 688 K for 24 h followed by water quenching, and then aged at 413 K for 48 h. The aged Mg-9%Al-1%Zn alloy had higher DPs content than the Mg-9%Al alloy, indicating that the Zn addition plays a beneficial role in enhancing age-hardening response. The DPs in the Zn-containing alloy possessed the higher hardness than those of the Zn-free alloy. Microstructural examination revealed that the increased hardness of the DPs resulting from the Zn addition is closely associated with the lower α-(Mg)/β(Mg17Al12) interlamellar spacing and the higher volume fraction of β phase layer of the DPs.

Effect of Al Addition on the Precipitation Behavior of a Binary Mg-Zn Alloy

  • Kim, Ye-Lim;Tezuka, Hiroyasu;Kobayashi, Equo;Sato, Tatsuo
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.111-117
    • /
    • 2012
  • The effect of Al addition on the precipitation behavior of a binary Mg-Zn alloy was investigated based on the changes in the morphology, distribution and element concentration of precipitates formed during aging treatment. The as-cast Mg-6.0 mass%Zn (Mg-6Zn) and Mg-6.0 mass%Zn-3.0 mass%Al (Al-added) were homogenized at 613 K for 48 h and at 673 K for 12 h; they were then solid solution treated at 673 K for 0.5 h and 1 h, respectively. The Mg-6Zn and Al-added alloys were aged at 403 K and 433 K. The peak hardness of the Al-added alloy was higher than that of the Mg-6Zn alloy at each aging temperature. Rod-like, plate-like, blocky, and lath-like precipitates were observed in the Al-added alloy aged at 433 K for 230.4 ks, although the rod-like and plate-like precipitates were observed in the TEM microstructure of the Mg-6Zn alloy aged at 433 K for 360 ks. Moreover, the precipitates in the Al-added alloy were refined and densely distributed compared with those in the Mg-6Zn alloy. The Cliff-Lorimer plots obtained by the EDS analysis of the rod-like ${\beta}_1^'$ and plate-like ${\beta}_2^'$ phases in the Al-added alloy peak aged at 433 K for 230.4 ks were examined. It was confirmed that the ${\beta}_2^'$ phases had higher concentration of solute Al atom than was present in the ${\beta}_1^'$ phases, indicating that the properties of precipitates can be changed by Al addition.

Optimum Fabrication Conditions and Reheating Characteristic of Semi-Solid Al-Zn-Mg-(Sc) Alloy by Inclined Cooling Plate (경사냉각판을 이용한 Al-Zn-Mg-(Sc) 반응고 합금 제조의 최적화 및 재가열 특성)

  • Kim, Tae-Hun;Shim, Sung-Yong;Park, Hyung-Won;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.213-219
    • /
    • 2009
  • Optimum conditions for production of semi-solid Al-Zn-Mg alloy billets was carried out by the Taguchi design method. And, Al-Zn-Mg alloy billets contained Sc (free, 0.1 and 0.3 mass %) were fabricated at optimum conditions. Evolution of microstructure in semi-solid state was investigated through various liquid fractions, holding times and holding temperatures. The Al-Zn-Mg alloy billets reheated at $615^{\circ}C$ during 30min are grain growth and it was fractured due to increasing liquid fraction before quenching. And, during reheating up to $600^{\circ}C$, grain growth of Al-Zn-Mg alloy billets contained Sc (0.1 and 0.3 mass %) was not occurred in comparison with those of Al-Zn-Mg alloy without Sc. It was thought that $Al_3Sc$ phases have a pinning effect in grain boundary and Sc content of 0.1 mass% is able to inhibit grain growth effectively through reheating process.

Differences in Cold Rolling Workability and Mechanical Properties between Al-Mg-Si and Al-Mg-Zn System Alloys with Cold Rolling (냉간압연가공에 따른 Al-5.5Mg-2.9Si계와 Al-7Mg-0.9Zn계 합금의 압연가공성 및 기계적 특성 차이)

  • Yang, Ji-Hun;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.628-634
    • /
    • 2016
  • The cold rolling workability and mechanical properties of two new alloys, designed and cast Al-5.5Mg-2.9Si and Al-7Mg-0.9Zn alloys, were investigated in detail. The two alloy sheets of 4 mm thickness, 30 mm width and 100 mm length were reduced to a thickness of 1 mm by multi-pass rolling at ambient temperature. The rolling workability was better for the Al-7Mg-0.9Zn alloy than for the Al-5.5Mg-2.9Si alloy; in case of the former alloy, edge cracks began to occur at 50% rolling reduction, and their number and length increased with rolling reduction; however, in the latter alloy, the sheets did not have any cracks even at higher rolling reduction. The mechanical properties of tensile strength and elongation were also better in the Al-7Mg-0.9Zn alloy than in Al-5.5Mg-2.9Si alloy. Work hardening ability after cold rolling was also higher in the Al-7Mg-0.9Zn alloy than in the Al-5.5Mg-2.9Si alloy. At the same time, the texture development was very similar for both alloys; typical rolling texture developed in both alloys. These differences in the two alloys can primarily be explained by the existence of precipitates of $Mg_2Si$. It is concluded that the Al-7Mg-0.9Zn alloy is better than the Al-5.5Mg-2.9Si alloy in terms of mechanical properties.

A Study on the Die Casting of Mg-9Al-1Zn Alloy for Air Bag Case (Mg-9Al-lZn 합금 자동차 에어백 케이스의 다이캐스팅에 관한 연구)

  • Kim, Sun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.77-83
    • /
    • 2002
  • Magnesium alloys casting are gaining increased acceptance in the automotive and electronic industeries and die casting is the most efficient method of manufacturing such mass produced parts. This study has been investigated the microstructures and mechanical properties of Mg-9Al-lZn alloy fabricated by die casting process for development of air bag case. The microstructure of die casted specimen were composed of pro-eutectic magnesium solid solution and $\beta$(Mg17Al12) precipitates. The tensile strength of as-fabricated Mg-9Al-lZn alloy revealed 231.4MPa. It was found that Mg-9Al-lZn alloy have good corrosion resistance in electrochemical polarization test.

Characterization of Extrusion Parts for after Pre-aging Treatment in an Al-4.8Zn-1.3Mg Alloy (안정화 열처리에 의한 Al-4.8Zn-1.3Mg계 합금 압출재 특성 평가)

  • Lee, Chang-Yeon
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.818-823
    • /
    • 2018
  • In this study, the effect of pre-aging treatment for inhibition of natural aging of Al-4.8Zn-1.3Mg alloy by extrusion process was investigated. Firstly, the as-cast microstructure of Al-4.8Zn-1.3Mg alloy billet and its evolution during homogenization($460^{\circ}C$, $4h+510^{\circ}C$, 5h) were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), hardness analysis. The as-cast microstructures of Al-4.8Zn-1.3Mg alloy reveal $Mg_2Zn$, $Al_5Cu$, $Al_{13}Cu$ formed between dendrities. After homogenization, MgZn, $Al_4Cu$, $Al_{13}Cu$ phases precipitated into the matrix. In addition, standard deviation of homogenized billet was improved than as-cast billet from 2.62 to 0.99. According to pre-aging($100^{\circ}C$, 1h) Al-4.8Zn-1.3Mg alloy by extrusion process, yield strength and tensile strength deviation improved more than condition by natural aging.

Formation of $Al_2O_3$-Composites by the Melt Oxidation of an AlZnMg-alloy (AlZnMg-합금의 용융산화에 의한 $Al_2O_3$-복합재료의 형성)

  • 김일수;김상호;강정윤
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.985-994
    • /
    • 1996
  • The initiation and growth of $\alpha$-Al2O3/metal composites by the directed oxidation of molten commercial AlZnMg-alloy at 1223-1423K were investigated. Spontaneous bulk growth did not occur on the alloy alone. but the uniform initiation and growth of the composite were obtained by putting a thin layer of SiO2 particles on the surface of the alloy. Without SiO2 the external surface of the oxide layer was convered by MgO and MgAl2O4. But with the SiO2 reaction initiate the porous ZnO layers were found on the growth surface. The higher process temperature yielded a lower metal content. The oxidation product of $\alpha$-Al2O3 was found to be oriented with c-axis parallel to th growth direction. The growth rates increased with temperature and the apparent activation energy was 111.8 kJ/mol.

  • PDF