• Title/Summary/Keyword: Alcaligenes eutrophus

Search Result 35, Processing Time 0.025 seconds

Conversion of D-$\alpha$-Amino-$\varepsilon$-Caprolactam into L-Lysine Using Cell-free Extracts of Alcaligenes eutrophus A52 (Alcaligenes eutrophus A52의 무세포 추출액에 의한 D-$\alpha$-Amino-$\varepsilon$-Caprolactam으로부터 L-Lysine으로의 전환)

  • 박희동;최선택;이인구
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.6
    • /
    • pp.375-380
    • /
    • 1987
  • D-$\alpha$-Amino-$\varepsilon$-carpolactam racemase (EC 5.1.1) and L-$\alpha$-amino-$\varepsilon$-caprolactam hydrolase (EC 3.5.2) were fractionated from cell-free extracts of Alcaligenes eutrophus A52 using ammonium sulfate precipitation and DEAE-cellulose ion exchange chromatography. It was made sure that D-$\alpha$-amino-$\varepsilon$-caprolactam was converted to L-$\alpha$-amino-$\varepsilon$-caprolactam by racemase, and then hydrolyzed into L-lysine by hydrolase in Alcaligenes eutrophus A52. For the conversion of D-$\alpha$-amino-$\varepsilon$-caprolactam into L-lysine by cell-free extracts of Alcaligenes eutrophus A52, the optimum temperature and pH were 6$0^{\circ}C$ and 8.5 respectively. The results showed that 0.5% D-$\alpha$-amino-$\varepsilon$-caprolactam was converted to L-lysine at 55$^{\circ}C$ for 10 hr with a conversion rate of 98% by cell-free extracts containing 3.1mg of protein.

  • PDF

High Cell Density Culture of Alcaligenes eutrophus and Poly-$\beta$-hydroxybutyrate Production by Optimization of Medium Compositions (배지조성 최적화를 통한 Alcaligenes eutrophus의 고농동 세포배양 및 Poly$\beta$-hydroxybutyrate 생산)

  • 이용우;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.401-406
    • /
    • 1994
  • The medium compositions of Alcaligenes eutrophus were optimized for increasing PHB productivity. It is very important to optimize the concentrations of inorganic salts and trace eleme- nts as well as carbon and nitrogen sources to maximize cell growth rate and productivity. The fed-batch culture of Alcaligenes eutrophus by dual feeding of ammonia water and glucose under optimized initial medium concentrations was carried out. Glucose was fed manually according to glucose consumption rate and ammonia water by pH-stat. The final cell concentrations and PHB content in 30 hours were 122 g/l and 65% of dry cell weight(yielding 79 g of PHB/l), respectively and 2.64 g/l/hr of PHB production rate was obtained.

  • PDF

Kinetics for the Growth of Alcaligenes eutrophus and the Biosynthesis of Poly-${\beta}$-hydroxybutyrate (Alcaligenes eutrophus 균주의 성장과 Ploy-${\beta}$-hydroxybutyrate 생합성에 대한 속도론)

  • Lee, Yong-Woo;Yoo, Young-Je
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.2
    • /
    • pp.186-192
    • /
    • 1991
  • It is very important to have a good kinetic model which considers the effects of both ammonium and glucose for the control and optimization of the poly-${\beta}$-hydroxybutyrate (PHB) fermentation. A kinetic model for the growth of Alcaligenes eutrophus and the biosynthesis of PHB under both ammonium and glucose limitation was proposed. Growth rate of residual biomass was expressed as a function of concentrations of residual biomass, glucose and ammonium having glucose inhibition. PHB production rate was expressed as a function of concentrations of residual biomass, glucose, ammonium and PHB content having ammonium and product inhibitions. Novel approaches were made to estimate the parameters in the model equations which considered two limiting substrates. Model parameters were evaluated by graphical and simplex methods. The proposed kinetic model fitted the data very well.

  • PDF

Construction of the Recombinant phbCAB Operon of Alcaligenes eutvtrphus for Accumulation of Poly-$\beta$-hydroxybu tyric Acid in Escherichia coli (Alcaligenes eutrophus phbCAB Operon의 재조합과 Poly-$\beta$-hydroxybutyric Aicd의 대장균내 축적)

  • 김경태;박진서;이용현;허태린;박해철
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.3
    • /
    • pp.221-228
    • /
    • 1993
  • In order to achieve poly-beta-hydroxybutyric acid (PHB) production using recombinant DNA in various host bacterial cells, the isolation of genes for PHB biosynthesis was attempted. As a result, a 5.2kb DNA fragment containing phbCAB operon of Alcaligenes eutrophus was isolated by colony hybridization using synthetic oligodeoxyribonucleotides as probes. The constructed recmbinant plasmid pSK(+)-phbCAB operon was transferred to Escherichia coli, and the obtained transformant accumulated considerable amount of PHB.

  • PDF

Cell separation from high density culture broths of Alcaligenes eutrophus by using Al-based coagulants (Alcaligens eutrohus 고농도 배양액으로부터 알루미늄(Al)계 응집제를 이용한 세포분리)

  • 조경숙;류희욱;정현우;곽종운;장용근
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.272-278
    • /
    • 1998
  • Cell recovery from high cell density broths of Alcaligenes eutrophus by pretreatment with aluminum-based coagulants such as aluminum sulfate, polyaluminum hydrooxide chloride silicate (PACS), and polyaluminum hydrooxide chloride (Hi-PAX) was carried out. Cells coagulated with coagulants could be successfully recovered above 95-99% by centrifugation or filtration. The optimum initial pH of fermentation broths for cell recovery was in the range of 10 to 12. Optimum coagulants dosage for cell recovery increased with increasing of cell concentrations (21-160 g/L). The optimum coagulant dosages to recover cells with more than 95% cell recovery by centrifugation for the cell concentrations ranged 21-160 g/L were as follows: aluminum sulfate, 416-1708 mg Al/L; PACS, 211-826 mg Al/L; Hi-PAX, 320-960 mg Al/L. At optimum conditions for the coagulation of cells, centrifugal forces for 95% of cell recovery were dependent on the cell concentration. The centrifugal forces at 82 g/L and 160 g/L of cell concentration were only 45${\times}$g and 1600${\times}$g, respectively.

  • PDF

Isolation and Characterization of D-$\alpha$-Amino-$\varepsilon$-Caprolactam Utilizing Bacteria (D-$\alpha$-Amino-$\varepsilon$-Caprolactam 자화균의 분리 및 특성)

  • 최선택;박희동;이인구
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.6
    • /
    • pp.369-374
    • /
    • 1987
  • A bacterium which grows on D-$\alpha$-Amino-$\varepsilon$-Caprolactam as sole carbon, energy and nitrogen source was isolated from the sludge of industrial areas in Taegu, and identified as Alcaligenes eutrophus. The optimum pH, temperature and concentration of D-$\alpha$-Amino-$\varepsilon$-Caprolactam for the growth were 6.0, 3$0^{\circ}C$ and 0.2% respectively. The bacteria could utilize glucose and fructose as a carbon source, and utilize ammonium chloride, ammonium nitrate, ammonium sulfate and sodium nitrate as a nitrogen source, and utilize L-Iysine and L-glutamate as a carbon and nitrogen source. It was found with thin layer chromatography and polarimeter that D-$\alpha$-Amino-$\varepsilon$-Caprolactam was converted to L-Iysine by the cell-free extracts of Alcaligenes eutrophus A52.

  • PDF

Effect of Oxygen Composition on Polyhydroxybutyrate Synthesis by Alcaligenes eutrophus at Various Pressures (Alcaligenes eutrophus에 의한 Polyhydroxybutyrate의 합성에 관한 산소효과)

  • Kim, Kyeo-Keun;Shin, Sun Kyoung;Kwon, Hyo-Shik
    • Analytical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.75-81
    • /
    • 1997
  • Poly-${\beta}$-hydroxybutyrates(PHB) are well known intracellular biopolymer which are completely degraded to carbon dioxide and water in the landfill. The pressurized fermentation method was used to increase the cell growth of Alcaligenes eutrophus and productivity of PHB. The experimental data were analyzed in terms of carbon source and gas composition effects at various elevated pressures and temperatures. The results reveal that the flow rate of hydrogen gas of 0.0075vvm for the culture is better PHB production than the no hydrogen flow when fructose was used as a sole carbon source. The higher yields and productivities of PHB biosynthesized by A. eutrophus were obtained when the oxygen composition was changed from 2% to 8% at 6atm and $30^{\circ}C$.

  • PDF

Cloning and Functional Expression in Escherichia coli of the Polyhydroxyalkanoate Synthase (phaC) Gene from Alcaligenes sp. SH-69

  • Lee, Il;Nam, Sun-Woo;Rhee, Young-Ha;Kim, Jeong-Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.5
    • /
    • pp.309-314
    • /
    • 1996
  • Alcaligenes sp. SH-69 can synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from a single carbon source such as glucose. To clone the phaC gene from Alcaligenes sp. SH-69, a polymerase chain reaction was performed using the oligomers synthesized based on the conserved regions of the phaC genes from other bacteria. A PCR product (550 bp) was partially sequenced and the deduced amino acid sequence was found to be homologous to that of the phaC gene from Alcaligenes eutrophus. Using the PCR fragment Southern blotting of Alcaligenes sp. SH-69 genomic DNA digested with several restriction enzymes was carried out. To prepare a partial genomic library, about 5-Kb genomic DNA fragments digested with EcoRI, which showed a positive signal in the Southern blotting, were eluted from an agarose gel, ligated with pUC19 cleaved with EcoRI, and transformed into Escherichia coli. The partial library was screened using the PCR fragment as a probe and a plasmid, named pPHA11, showing a strong hybridization signal was selected. Restriction mapping of the insert DNA in pPHA11 was performed. Cotransformation into E. coli of the plasmid pPHA11 and the plasmid pPHA21 which has phaA and phaB from A. eutrophus resulted in turbid E. coli colonies which are indicative of PHA accumulation. This result tells us that the Alcaligenes sp. SH-69 phaC gene in the pPHA11 is functionally active in E. coli and can synthesize PHA in the presence of the A. eutrophus phaA and phaB genes.

  • PDF

Culture Conditions and Cell Composition of Hydrogen Bacteria Alcaligenes eutrophus ATCC 17697 (수소세균 Alcaligenes eutrophus ATCC 17697의 배양조건 및 균체성분)

  • Ham, Kyung-Sik;Kim, Kil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.210-214
    • /
    • 1986
  • The culture conditions and cell composition of a hydrogen bacterica, Alcaligenes eutrophus ATCC 17697. were investigated. Optimum pH and temperature for cell growth under autotrophic condition ($H_2$ as energy source, $CO_2$, as crabon source) were around 7.0 and $30^{\circ}C$, respectively. Effect of oxygen partial pressure in the range of 0.059 atm and 0.27 atm on cell growth was also studied. Maximum specific growth rate $({\mu}max=0.31hr^{-1})$ was observed at 0.11 atm of oxygen partial pressure $(H_2:O_2:CO_2=7:1:1)$. The contents of crude protein, nucleic acid and ash in cells were 69.2%, 17.6%, and 3.62%, respectively.

  • PDF

Production of Poly($\beta$-hydroxybutyrate-co-$\beta$-hydroxyvalerate) by Two-stage Fed-batch Fermentation of Alcaligenes eutrophus

  • Lee, In-Young;Kim, Guk-Jin;Shin, Yong-Cheol;Chang, Ho-Nam;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.5
    • /
    • pp.292-296
    • /
    • 1995
  • Production of poly($\beta$-hydroxybutyrate-co-$\beta$-hydroxyvalerate)[poly(HB-co-HV) from glucose and propionic acid was studied in a two-stage fed-batch fermentation using Alcaligenes eutrophus NCIMB 11599. When either glucose became sufficient or the feeding rate of propionic acid decreased, production of poly(HB-co-HV) increased but concomitantly resulted in a reduced fraction of HV. During the copolymer accumulation stage, the specific production rate of hydroxyvalerate (HV) increased up to 0.013 (g-HV/g-RCM/h) but it decreased as propionic acid was accumulated. Control of the propionic acid concentration in the medium, therefore, is considered to be one of the most important operating parameters for production of poly(HB-co-HV) with a higher HV fraction. A high titre of poly(HB-co-HV) (85.6 g/I) with HV fraction of 11.4 mol$%$ could be obtained in 50 h by controlling the propionic acid concentration at 1 to 4 g/I.

  • PDF