• Title/Summary/Keyword: Alcohol dehydrogenase

Search Result 425, Processing Time 0.032 seconds

Effects of Fruit Extract Drink on Alcohol Metabolic Enzymes in Ethanol-treated Rats

  • Kim, Sung-Su
    • Biomedical Science Letters
    • /
    • v.20 no.3
    • /
    • pp.124-128
    • /
    • 2014
  • Alcoholism is a significant global health problem. Alcohol dehydrogenase and aldehyde dehydrogenase play important roles in the metabolism of alcohol and aldehyde. In this study, we aimed to investigate the eliminatory effects of a fruit extract drink on alcohol metabolism in drunken Sprague-Dawley (SD) rats. Male SD rats were given a fruit extract drink or a commercial product (10 mL/kg) 30 min prior to 40% (5 g/kg) ethanol ingestion. To assay the effect of the fruit extract drink on blood ethanol concentration, blood samples were taken from the saphenous vein at 3 and 5 h after ethanol ingestion. The blood concentrations of alcohol, alcohol dehydrogenase, and aldehyde dehydrogenase were significantly lower in the fruit extract drink group than in the control group, in a time-dependent manner. However, the alanine aminotransferase and aspartate aminotransferase activities of all experimental groups were unaltered compared to those of the control group. These results suggested that fruit extract drink intake can have a positive effect on the reduction of alcohol, alcohol dehydrogenase, and aldehyde dehydrogenase concentrations in the blood and may alleviate acute ethanol-induced hepatotoxicity by altering alcohol metabolic enzyme activities.

Effects of Phellinus spp. Extract on Alcohol Metabolic Enzymes in Alcohol-treated Rats

  • Kim, Sung-Su
    • Biomedical Science Letters
    • /
    • v.22 no.2
    • /
    • pp.53-59
    • /
    • 2016
  • Alcoholism is a significant health problem in the world. The liver is the first and primary target organ for alcohol metabolism. Alcohol dehydrogenase and aldehyde dehydrogenase play important roles in the metabolism of alcohol and aldehyde. In this study, I aimed to investigate the eliminatory effects of a Phellinus spp. extract on alcohol metabolism in drunken Sprague-Dawley (SD) rats. Male SD rats were given Phellinus spp. extract at 30 min after 40% (5 g/kg) alcohol ingestion. To assay the effect of Phellinus spp. extract on blood alcohol concentration, blood samples were taken from the tail vein at 1, 3 and 5 h after alcohol ingestion. The concentrations of alcohol, alcohol dehydrogenase, and aldehyde dehydrogenase in Phellinus spp. extract treated rat were significantly lower than that of the control with a time-dependent manner. In addition, the alanine aminotransferase and aspartate aminotransferase activities of Phellinus spp. extract-treated groups were altered compared to those of the control group. These results suggest that Phellinus spp. extract intake can have a positive effect on the reduction of alcohol, alcohol dehydrogenase, and aldehyde dehydrogenase concentrations in the blood and may alleviate acute alcohol-induced hepatotoxicity by altering alcohol metabolic enzyme activities. Phellinus spp. extract is thus a good nutraceutical candidate.

Search for acetaldehyde trapping agents by using alcohol dehydrogenase assay

  • Lee, Hyun-Joo;Lee, Kang-Man
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.160.3-161
    • /
    • 2003
  • Aldehyde and active form of free oxygen produced in alcohol metabolism in liver are the cause of liver cell damage. The main system of alcohol metabolism is composed of alcohol dehydrogenase(ADH), aldehyde dehydrogenase(ALDH) and cytochrome P4502E1. Alcohol dehydrogenase is reversible in alcohol metabolism. To block the backward reaction and enhance alcohol oxidation, acetaldehyde trapping agents were assayed. The assay was carried out by measuring decreasing NADH at 340nm, using acetaldcehyde and NADH as substrate and coenzyme respectively. (omitted)

  • PDF

Effects of Chunggansan on Detoxication of Alcohol by Activity of Enzyme in Rats (청간산(淸肝散)이 흰쥐의 알코올 대사(代謝) 효소(酵素) 활성도(活性度)에 미치는 영향(影響))

  • Kim, Jong-Dae;Jeong, Ji-Cheon;Sin, Eok-Seop
    • The Journal of Internal Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.15-25
    • /
    • 1997
  • Chunggansan was tested for the effects on detoxication mechanism of alcohol. Chunggansan was treated firstly into samples, and then ethanol intoxicated animal models were set with them. The administration of Chunggansan to the rats increased proportionally in alcohol dehydrogenase activities in liver in relation to the level of concentration and days of treatment. Especially, the alcohol dehydrogenase was the most active when the concentration of extract was 200mg/kg and it was 7th day. The enzyme activities of alcohol dehydrogenase and aldehyde dehydrogenase in liver highly increased in Chunggansan pre-medicating group compared to that of ethanol treated group. Also, the blood ethanol concentration in rats was considerably decreased. In conclusion, Chunggansan recovers the damage of liver due to acute alcohol intoxication by the increased enzyme activities of alcohol dehydrogenase and aldehyde dehydrogenase.

  • PDF

Screening of Alcohol Dehydrogenase Inhibitors from Natural Products (천연물로부터 알코올 탈수소효소 저해제 검색)

  • 이현주;이강만
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.481-486
    • /
    • 1999
  • Excessive or long term ingestion of alcohol may cause hepatitis, cirrhosis, hepatic tumor and so on. Aldehyde and active form of free oxygen that are metabolites of alcohol in liver are the cause of liver cell damage. The main system of alcohol metabolism is composed of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH) and cytochrome P450. In connection with in vivo alcohol metabolism, more than one hundred natural products were screened for inhibition or activation of alcohol dehydrogenase. As a results, we found significant inhibition ($IC_50$) of ADH by methanolic extracts of Puerariae Radix ($61.2{\;}\mu\textrm{g}/ml$), Glycyrrhizae Radix ($105.0{\;}\mu\textrm{g}/ml$), Cinnamomi Ramulus ($7.0{\;}\mu\textrm{g}/ml$), Rhei Rhizoma ($36.7{\;}\mu\textrm{g}/ml$), Mori Cortex Radicis ($106.2{\;}\mu\textrm{g}/ml$), Chrysanthemi Flos ($112.2{\;}\mu\textrm{g}/ml$), Erycibes Caulis ($36.7{\;}\mu\textrm{g}/ml$), and Scutellariae Radix ($122.5{\;}\mu\textrm{g}/ml$)

  • PDF

Cloning and Expression of the Structural Gene for Alcohol Dehydrogenase of Zymomonas mobilis in Escherichia coli (Zymomonas mobilis 알코올 탈수소 효소 유전자의 Cloning과 Escherichia coli 에서의 발현)

  • Yoon, Ki-Hong;Shin, Byung-Sik;M.Y Pack
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.301-306
    • /
    • 1989
  • A genomic library of Zymomonas mobilis DNA was constructed in Escherichia coli using plasmid pUC9 Allyl alcohol was used to screen a genomic clone expressing alcohol dehydrogenase. The plasmids isolated from two clones, which were sensitive to allyl alcohol, were found to be related and to share a common 2.6 kb fragment encoding alcohol dehydrogenase II identified as one of two isozymes in Z. mobilis by staining for alcohol dehydrogenase activity on polyacrylamide gel and spectrophotometric analysis of several substrate oxidations.

  • PDF

Kinetic Studies of Parent Compounds and Its Metabolite by Combined Treatment of Allyl Alcohol with Ethanol in vivo (Allyl Alcohol 및 Ethanol 혼합투여에 의한 혈중 농도 변화 및 독성과의 상관성)

  • 이주영;정승민;이무열;정진호
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.557-562
    • /
    • 1998
  • Allyl alcohol is metabolized in the liver through two steps, first to reactive acrolein by alcohol dehydrogenase (ADH), subsequently to acrylic acid by aldehyde dehydrogenase (ALDH). Since ethanol could compete the same enzymes to be metabolized in the liver, we have determined the plasma concentrations of allyl alcohol and ethanol followed by combined treatment. Pretreatment of rats with 2g/kg ethanol followed by ip administration of 40mg/kg allyl alcohol increased the lethality significantly. Determination of in vivo blood concentrations revealed that ethanol pretreatment caused the apparent decrease in allyl alcohol clearance, whereas acetaldehyde level in blood increased significantly by allyl alcohol treatment, as determined by head space GC analysis. Treatment of 4-methylpyrazole, an inhibitor of ADH, delayed allyl alcohol elimination significantly and reduced its lethality. Collectively, these findings suggested that reduction of allyl alcohol clearance in the presence oj ethanol was mediated through ADH competitive inhibition.

  • PDF

Ethanol이 allyl alcohol 독성에 미치는 영향

  • 이주영;정진호
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.323-323
    • /
    • 1994
  • Allyl alcohol은 간에서 두 단계의 효소 반응을 거쳐 대사되는데, 먼저, alcohol dehydrogenase (ADH)에 의해 독성 활성체인 acrolein으로 바뀌고, 이후 계속하여 aldehyde dehydrogenase (ALDH)에 의해 acrylic acid로 무독화되어 배설된다. Ethanol 역시 간에서 대사되는데 있어 같은 효소들을 공유하므로 allyl alcohol과 경쟁적으로 반응할 것이다. 따라서, 본 실험에서는 ethanol에 의한 대사 효소 경쟁반응에 의해 allyl alcohol 의 간독성이 어떻게 변화하는지를 연구하였다. 우선 ethanol과 allyl alcohol을 동시 투여할 경우 5시간째에 allyl alcohol에 의해 증가된 ALT level을 낮춘다는 보고를 확인하고자 ethanol 2 g/kg과 allyl alcohol 40 mg/kg을 동시투여했으나 오히려 치사율이 증가했고, ethanol을 2시간 전처리한 군에서도 역시 치사율이 증가되고, 간의 glutathione 양은 allyl alcohol 단독 처리군에 비해 현저히 감소되는 양상을 보였다.

  • PDF

Enzyme Production Related to Alcohol Metabolism from Thermophilic Fungus Thermoascus aurantiacus (호열성 사상균 Thermoascus aurantiacus의 알코올분해대사 관련 효소학적 특성)

  • Ko Hee-Sun;Kim Hyun-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.216-220
    • /
    • 2006
  • Thermophillic fungus Thermoascus aurantiacus showed excellent growth and produced high amount of alcohol oxidase and catalase in a pectin medium. Besides, the strain produced enzymes which related with pectin or alcohol decomposition. We detected extracellular pectin esterase (EC 3.1.1.11) activity and, both intracellular and extracellular pectinase (EC 4.2.2.10) activity, as pectinolytic enzymes produced by T. aurantiacus. The production of methanol decomposition enzymes, such as alcohol oxidase (AOD, EC 1.1.3.13), alcohol dehydrogenase (ADH, EC 1.1.1.1), formaldehyde dehydrogenase (FADH, EC 1.2.1.1) and formate dehydrogenase (FDH, EC 1.2.1.2) follows by pectin esterase reaction which is converted to methanol. We concluded that T. aurantiacus has pectinolytic and alcohol - oxidative enzymological mechanism which produced carbon dioxide as a final material, started from pectin.

Effect of Ethanol on Allyl alcohol-Induced Toxicity (Ethanol이 Allyl alcohol 독성에 미치는 영향)

  • Lee, Joo-Young;Kim, Dae-Byung;Moon, Chang-Kiu;Chung, Jin-Ho
    • YAKHAK HOEJI
    • /
    • v.38 no.2
    • /
    • pp.107-113
    • /
    • 1994
  • Ally alcohol is metabolized in the liver through two steps, first to reactive acrolein by alcohol dehydrogenase(ADH), subsequently to acrylic acid by aldehyde dehydrogenase(ALDH). Since ethanol could compete the same enzymes to be metabolized in the liver, we have studied the interaction between allyl alcohol and ethanol on liver toxicity. Simultaneous treatment of 2 g/kg ethanol by ip administration with 40 mg/kg allyl alcohol to rats increased the lethality significantly, accompanied by potentiation of the loss of hepatic glutathione. Collectively, these findings suggested that ethanol potentiated the hepatotoxicity and lethality induced by allyl alcohol probably through competing two metabolizing enzymes, ADH and ALDH.

  • PDF