• 제목/요약/키워드: Algal Removal

검색결과 126건 처리시간 0.028초

Removal of Inorganic Nitrogen and Phosphorus from Cow s Liquid Manure by Batch Algal Culture

  • KIM, MAM-SOO;MOO-YOUNG PACK
    • Journal of Microbiology and Biotechnology
    • /
    • 제3권3호
    • /
    • pp.214-216
    • /
    • 1993
  • Cow's liquid manure (CLM), an animal waste, was treated by a batch algal culture to remove inorganic nutrients. CLM used in this study was especially high in concentrations of inorganic nitrogen and phosphorus. The optimum dilution ratio of the CLM for maximum algal growth was 1:25. Ninety five percent of inorganic nitrogen and 100% of inorganic phosphorus were removed from the CLM with a dilution ratio of 1:25.

  • PDF

호기성 고율 안정조에서 빛의 조사 기간과 pH가 조류의 영양물질 제거에 미치는 영향 (Effect on Nutrients Removal of Algae in Aerobic High Rate Pond by Irradiance Period and pH)

  • 공석기;안승구
    • 한국환경과학회지
    • /
    • 제6권2호
    • /
    • pp.141-152
    • /
    • 1997
  • The pilot plant had been made so as to be an association system from the various items managed to have degrees of efficiency and It have been done to consider the experimental result with irradiance period and pH influence of all major things to treatment function of Waste Stabilization Pond. The results are as following. The attained results for continuous & cyclic irradiance 1. 24L.-reactor was prior to 12L.-12D.-reactor on oxygen generation & algal production ability. 2. 24L.-reactor was prior to 12L.-12D.-reactor on nutrients removal efficiency. 3. In 24L.-reactor it maintained 5mg/L∼6mg/L, DO concent enough to a fish's survival. The attained results for pH condition 1. Oxygen generation ^ algal production in pH 4-reactor were higher than those in pH 10-reactor. 2. The acidic condition at pH 4 and alkalic condition at pH 10 did not so much affect an algal growth and nutrients removal. The attained results for whole 1. In view of the results appeared as [(NH3-N)+(NO3-N)] removal efficiency, 89.1%∼93.9% and PO4-P removal efficiency, 34.3%∼83.7% & COD removal efficiency, 88.5%∼93.9%. It is possible to treat the wastewater with starch and pH which have been known as thedifficult problem. 2. At the point of non using methanol to nitrificate NO3-N, the nutrients removal method by using an algal growth is the most economical method in the whole nutrients removal methods. 3. The nutrients removal method by using an algal growth contributes to natural ecosystem. 4. The nutrients removal method by using an algal growth is excellant in the prevention against the eutrophication.

  • PDF

Effect of Algal Inoculation on COD and Nitrogen Removal, and Indigenous Bacterial Dynamics in Municipal Wastewater

  • Lee, Jangho;Lee, Jaejin;Shukla, Sudheer Kumar;Park, Joonhong;Lee, Tae Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권5호
    • /
    • pp.900-908
    • /
    • 2016
  • The effects of algal inoculation on chemical oxygen demand (COD) and total nitrogen (TN) removal, and indigenous bacterial dynamics were investigated in municipal wastewater. Experiments were conducted with municipal wastewater inoculated with either Chlorella vulgaris AG10032, Selenastrum gracile UTEX 325, or Scenedesmus quadricauda AG 10308. C. vulgaris and S. gracile as fast growing algae in municipal wastewater, performed high COD and TN removal in contrast to Sc. quadricauda. The indigenous bacterial dynamics revealed by 16S rRNA gene amplification showed different bacterial shifts in response to different algal inoculations. The dominant bacterial genera of either algal case were characterized as heterotrophic nitrifying bacteria. Our results suggest that selection of indigenous bacteria that symbiotically interact with algal species is important for better performance of wastewater treatment.

Photocatalytic Degradation of Algae and its By-product using Rotating Photocatalytic Oxidation Disk Reactor

  • Son, Hee-Jong;Jung, Chul-Woo;Bae, Sang-Dae
    • Environmental Engineering Research
    • /
    • 제14권3호
    • /
    • pp.170-173
    • /
    • 2009
  • This study examined the special technique of photocatalytic degradation (RPODisk) for removal of taste and odor causing materials, algae, and algal toxin. The RPODisk was effective for removal of these troublesome contaminants. It outperformed the fixed media and the UV irradiation for geosmin removal. The RPODisk performance was comparable to the combination of the UV irradiation with TiO2. The RPODisk performance was affected by the rotating speed. The faster the speed was, the better the performance. The RPODisk was also effective for removal of algae and algal toxin. The algal activity reduced by 80% after 30 mins of the treatment. More toxic microcystin (MC)-LR was more difficult to remove than MC-RR. The times for 50% removal were 23.7 mins for MC-LR and 14.1 mins for MC-RR. Almost 100 mins of the contact time was required to completely remove MC-LR at the rotating speed of 260 rpm.

Flotation of cyanobacterial particles without chemical coagulant under auto-flocculation

  • Kwak, Dong-Heui;Kim, Tae-Geum;Kim, Mi-Sug
    • Membrane and Water Treatment
    • /
    • 제9권6호
    • /
    • pp.447-454
    • /
    • 2018
  • Although flotation techniques are often used for the removal of algal particles, the practicality of algae-harvesting technologies is limited owing to the complex and expensive facilities and equipment required for chemical coagulation. Here, we examined the feasibility of an approach to separating algal particles from water bodies without the need for chemical coagulants, depending on the condition of the algae, and to determine the optimal conditions. Using Anabaena sp., a cyanobacterium causes algal blooms in lakes, we stimulated auto-flocculation in algal particles without coagulants and conducted solid-liquid separation experiments of algal particles under various conditions. The six cultivation columns included in our analysis comprised four factors: Water temperature, light intensity, nutrients, and carbon source; auto-flocculation was induced under all treatments, with the exception of the treatment involving no limits to all factors, and algal particles were well-settled under all conditions for which auto-flocculation occurred. Meanwhile, flotation removal of auto-flocculated algal particles was attained only when nutrients were blocked after algae were grown in an optimal medium. However, no significant differences were detected between the functional groups of the extracellular polymeric substances (EPSs) of floated and settled algal particles in the FT-IR peak, which can cause attachment by collision with micro-bubbles.

실제 하수조건에서 조류-세균 복합군집의 생태적 상호작용 및 영양염류 제거 특성 규명 (Characterization of Algal-Bacterial Ecological Interaction and Nutrients Removal Under Municipal Wastewater Condition)

  • 이장호;박준홍
    • 대한환경공학회지
    • /
    • 제33권5호
    • /
    • pp.314-324
    • /
    • 2011
  • 하수를 이용해서 배양된 조류는 바이오디젤 생산에 유용한 자원이다. 그러나 실제 하수에서 조류의 영양염류 신진대사와 하수 세균과의 상호작용에 관한 연구는 미흡하다. 본 연구에서는 하수로 배양되는 대표적 조류균주인 Ankistrodesmus gracilis SAG 278-2에 의한 하수 내 질소, 인 제거 거동을 평가하였고, 조류와 상호작용하는 하수 내의 세균 군집을 분석하였다. 하수 슬러지 세균 군집과 비교하였을 때, 조류-세균 복합 군집은 하수 내보다 높은 영양염류 제거를 보였다. 16S rRNA 유전자 분석 결과, 조류-세균 군집에서 조류가 성장함에 따라 Unclassified Alcaligenaceae 세균이 선택적으로 우점됨을 알 수 있었고, 조류에 의해서 선택적으로 우점화된 하수세균은 자연 수질 환경에서 조류와 공생적으로 상호작용 하는 것으로 알려진 Alcaligenes faecalis subsp. 5659-H와 계통학적으로 가까운 것으로 밝혀졌다. 본 연구의 결과, 하수 내의 높은 영양염류 제거를 보이는 조류-세균 복합 군집에서의 조류의 성장 및 신진대사가 특정 세균의 분포에 영향을 주는 것을 알 수 있었다.

저서생물의 환경생태학적 특성을 이용한 완속 모래여과지의 조류제거 (Removal of Algae in a Slow Sand Filter using Ecological Property of Macrobenthos (Pomacea canaliculata))

  • 손희종
    • 한국환경과학회지
    • /
    • 제22권3호
    • /
    • pp.371-378
    • /
    • 2013
  • After identifying species by collecting the suspended and attached algae mat inhabiting in the slow sand-filter, Spirogyra sp., Mougeotia sp. and Closterium sp. were main green algae and Synedra sp. was diatom algae. Among them green algae Spirogyra sp. was dominant species. A result of observing the life mode of apple snail for a month after introducing into the slow sand-filter, apple snail eggs were discovered on the filter walls 2 weeks after introducing, 4 weeks later lots of eggs were observed all of the slow sand-filter walls, it means there is no problem for apple snail to live in the slow sand-filter. The observation result for algae removal potential by introduced apple snail after 2 months later, slow sand-filter where apple snail were introduced, a few algal mat were observed. On the other hand, no introduced apple snail into the slow sand-filter, lots of suspended algal mats were formed in the water and attached algal mats on the sand surface as well, these algal mat induced much of operating problems.

The Use of Oyster Shell Powders for Water Quality Improvement of Lakes by Algal Blooms Removal

  • Huh, Jae-Hoon;Choi, Young-Hoon;Lee, Hyun-Jae;Choi, Woo Jeong;Ramakrishna, Chilakala;Lee, Hyoung-Woo;Lee, Shin-Haeng;Ahn, Ji-Whan
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.1-6
    • /
    • 2016
  • In this year, Koreans have a shortage in agricultural and drinking water due to severe algal blooms generated in major lakes. Waste oyster shells were obtained from temporary storage near the workplace at which oysters were separated from their shells. Heating ($1000^{\circ}C$ for 1 h in air) was employed to convert raw oyster shell powders into calcium oxide powders that reacted efficiently with phosphorus and nitrogen to remove algal blooms from eutrophicated wastewater. As the dispersed amount of heated oyster shell powders was increased, water clarity and visual light penetration were improved. Coagulation, precipitation and carbonation process of the heated oyster shell powders in a water purifier facilitated removal of eutrophication nutrient such as phosphorus and nitrogen, which is both beneficial and economically viable. $CO_2$ implantation by carbonation treatment not only produced thermodynamically stable CaO in oyster shells to derive precipitated calcium carbonate (PCC) but also accelerated algal removal by activation of coagulation and precipitation process. The use of oyster shell powders led to a mean reduction of 97% in total phosphate (T-P), a mean reduction of 91% in total nitrogen (T-N) and a maximum reduction of 51% in chemical oxygen demand (COD), compared with the total pollutant load of raw algal solution. Remarkable water quality improvement of algal removal by heated oyster shell powders and PCC carbonation treatment will allow utilization as water resources to agricultural or industrial use.

Nutrient Removal and Biofuel Production in High Rate Algal Pond Using Real Municipal Wastewater

  • Kim, Byung-Hyuk;Kang, Zion;Ramanan, Rishiram;Choi, Jong-Eun;Cho, Dae-Hyun;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권8호
    • /
    • pp.1123-1132
    • /
    • 2014
  • This study evaluated the growth and nutrient removal ability of an indigenous algal consortium on real untreated municipal wastewater in a high rate algal pond (HRAP). The HRAP was operated semicontinuously under different hydraulic retention times (HRT: 2, 4, 6, and 8 days). The average removal efficiencies of chemical oxygen demand, and total nitrogen and phosphate of real municipal wastewater were maintained at $85.44{\pm}5.10%$, $92.74{\pm}5.82%$, and $82.85{\pm}8.63%$, respectively, in 2 day HRT. Algae dominated the consortium and showed high settling efficiency (99%), and biomass and lipid productivity of $0.50{\pm}0.03g/l/day$ and $0.103{\pm}0.0083g/l/day$ (2day HRT), respectively. Fatty acid methyl ester analysis revealed a predominance of palmitate (C16:0), palmitoleate (C16:1), linoleate (C18:2), and linolenate (C18:3). Microalgal diversity analyses determined the presence of Chlorella, Scenedesmus, and Stigeoclonium as the dominant microalgae. The algal consortium provides significant value not only in terms of energy savings and nutrient removal but also because of its bioenergy potential as indicated by the lipid content (20-23%) and FAME profiling.

Pre-ozonation for removal of algal organic matters (AOMs) and their disinfection by-products (DBPs) formation potential

  • Jing Wang;Se-Hyun Oh;Yunchul Cho
    • Membrane and Water Treatment
    • /
    • 제14권2호
    • /
    • pp.77-83
    • /
    • 2023
  • As a result of algal bloom, algal organic matters (AOMs) are rapidly increased in surface water. AOMs can act as precursors for the formation of harmful disinfection by-products (DBPs), which are serious problems in water treatment and human health. The main aim of this study is to characterize the formation of DBPs from AOMs produced by three different algae such as Oscillatoria sp., Anabaena sp., and Microcystis aeruginosa under different algal growth phases. In an effort to examine formation of DBPs during chlorination, chloroform (TCM), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were determined under various CT (product of disinfectant concentration and contact time, mg·min/L) values. Generally, the amounts of DBPs tended to increase with increasing CT values at the most growth phases. However, there was a significant difference between the amounts of DBPs produced by the three algal species at different growth phases. This result is likely due to the chemical composition variability of AOM from different algae at different growth phases. In addition, the effect of pre-ozonation on coagulation for the removal of AOMs from three algal species was investigated. The pre-ozonation had a positive effect on the coagulation/flocculation of AOMs.