• Title/Summary/Keyword: Alkali activator

Search Result 173, Processing Time 0.026 seconds

Physical and Mechanical Properties of Non-Cement Porous Concrete with Alkali-Activator Contents (알칼리활성화제 치환율에 따른 무시멘트 다공성 콘크리트의 물리·역학적 특성)

  • Kim, Dong-Hyun;Kim, Chun-Soo;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.59-64
    • /
    • 2013
  • The present study is to evaluate physical and mechanical properties of porous concrete having non cement that mainly causes carbon emission. This study aims to explore eco-friendly concrete technology capable of reducing the amount of carbon emission due to the use of normal cement by substituting it with non cement porous concrete to which alkali-activator and blast-furnace slag powder are impregnated. As experimental variables, 5 %, 6 %, 7 %, 8 %, 9 % and 10 % of alkali-activator were substituted as binders and applied. Testing evaluated in this study were pH value, void ratio, compressive strength and residual compressive strength shown after being immersed in $H_2SO_4$ solution and $Na_2SO_4$ solution. The test results were compared with those tested with the use of porous concrete to which 400 $kg/m^3$ of unit cement amount was applied as binder. In consequence, it was concluded that; as for pH value, it was decreased than was the case in which cement was used, but increased with the more the use of alkali activator; as for void ratio and compressive strength, the mix proportion in which 9 % and 10 % of alkali activator were applied in terms of substitution ratio showed the result similar to the mixture in which 400 $kg/m^3$ of unit cement ratio was applied; and, as for residual compressive strength in the case of being immersed in $H_2SO_4$ solution and $Na_2SO_4$ solution, the compressive strength was increased, thus leading to improved chemical resistance.

Fundamental Properties of Alkali Activated Slag Mortar with Different Activator Type (자극제의 종류에 따른 알칼리 활성화 슬래그 모르타르의 기초 특성)

  • An, Yang-Jin;Mun, Kyoung-Ju;Soh, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.789-792
    • /
    • 2006
  • The purpose of this study is to investigation the fundamental properties of alkali activated slag of type and concentration of alkali activator. In this paper sodium silicate, sodium carbonate and sodium hydroxide were used as alkaline activator and their concentration were 1, 3, 5 and 7 $Na_2O$ weight percent. The physical properties of alkali activated blast furnace slag cement mortar (AAS) were investigated by flow test and compressive strength. And the hydration properties of AAS characterized by X-ray diffraction and scanning electron microscope. Result show that Alkali activated slag mortar strengths were continuously increased with adding amount and ages. C-S-H were formed to be the main products up to 28days of hydration.

  • PDF

Effect of Types and Replacement Ratio of Alkali Activator on Compressive Strength of Ground Granulated Blast Furnace Slag Mortar (알칼리 자극제의 종류 및 치환율이 고로슬래그 미분말 모르타르의 압축강도에 미치는 영향)

  • Kim, Rae-Hwan;Kim, Gyu-Yong;Kim, Jong-Hee;Lee, Bo-Kyeong;Cho, Bong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.360-366
    • /
    • 2014
  • In this study, effect of types and replacement ratio of alkali activator on compressive strength of ground granulated blast furnace slag mortar has been reviewed. Types of alkali activator are NaOH, $Ca(OH)_2$, $Na_2SO_4$, and KOH. Replacement ratio of alkali activator is 7.5, 10, 12.5, and 15%, respectively. As results, under high temperature curing condition, 1 day compressive strength development with NaOH and KOH was higher than that of $Ca(OH)_2$ and $Na_2SO_4$. Regardless of types of alkali activator, compressive strength increased with increasing pH. This can be explained by the fact that impermeable film on the surface of slag which is generated when slag contacts water has been destroyed by alkali activator, and this promotes hydration reaction. Also, 1 day age compressive strength of specimen with high temperature curing was higher than that of specimen with standard curing. 28 days age compressive strength of specimen with high temperature curing was less than or equal to that of specimen with standard curing.

The Effect on the Alkali-Activator Mixture Ratio of fly Ash Mortar (알칼리 활성화제 혼합비가 플라이애시 모르타르에 미치는 영향)

  • Kang, Hyun-Jin;Kang, Su-Tae;Ko, Kyung-Taek;Ryu, Gum-Sung;Park, Jung-Jun;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.395-396
    • /
    • 2009
  • The purpose of this study is to observe the effect of mixture ratio of alkali-activator on workability and compressive strength of alkali-activated mortar that using 100% fly ash.

  • PDF

An Experimental Study on Early Strength and Drying Shrinkage of High Strength Concrete Using High Volumes of Ground Granulated Blast-furnace Slag(GGBS) (고로슬래그 미분말을 대량 사용한 고강도 콘크리트의 조기강도 및 길이변화 특성에 관한 실험적 연구)

  • Yang, Wan-Hee;Ryu, Dong-Woo;Kim, Woo-Jae;Park, Dong-Cheol;Seo, Chee-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.391-399
    • /
    • 2013
  • For high strength concrete of 40~60 MPa, the effects on the early strength and concrete dry shrinkage properties replacing 60~80% of Ordinary Portland Cement with Blast Furnace Slag Powder and using the Alkali Activator (Modified Alkali Sulfate type) are considered in this study. 1% Alkali Activator to the binder, cumulative heat of hydration for 72 hours was increased approximately 45%, indicating that heat of hydration contributes to the early strength of concrete, and the slump flow of concrete decreased slightly by 3.7~6.6%, and the 3- and 7- strength was increased by 8~12%, which that the Alkali Activator (Modified Alkali Sulfate type) is effective for ensuring the early strength when manufacturing High Strength Concrete (60%) of Blast Furnace Slag Powder. Furthermore, the dry shrinkage test, both 40 MPa and 60 MPa specimens had level of length changes in order of BS40 > BS60 > BS60A > BS80A, and the use of the Alkali Activator somewhat improved resistance to dry shrinkage.

Durability of Alkali-Activated Blast Furnace Slag Concrete: Chloride Ions Diffusion (알칼리 활성 슬래그 콘크리트의 내구성: 콘크리트의 염소이온 확산)

  • Nam, Hong Ki;Kyu, Park Jae;San, Jung Kyu;Hun, Han Sang;Hyun, Kim Jae
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.120-127
    • /
    • 2015
  • The aim of the present study is to investigate some characteristics of concrete according to addition of blast furnace slag and alkali-activator dosages. Blast furnace slag was used at 30%, 50% replacement by weight of cement, and liquid sulfur having NaOH additives was chosen as the alkaline activator. In order to evaluate characteristics of blast furnace slag concrete with sulfur alkali activators, compressive strength test, total porosity, chloride ions diffusion coefficient test were performed. The early-compressive strength characteristics of blast furnace slag concrete using a sulufr-alkali activators was compared with those of reference concrete and added 30, 50% blast furnace slag concrete. Also, Blast furnace slag concrete using sulfur-alkali activators enhanced the total porosity, chloride ions diffusion coefficient than two standard concrete. Alkali-activated blast furnace slag concrete was related to total porosity, compressive strength and chloride ions diffusion coefficient each others. As a result, it should be noted that the sulfur-alkali activators can not only solve the demerit of blast furnace slag concrete but also offer the chloride resistance of blast furnace slag concrete using sulfur alkali activators to normal concrete.

Mechanical Properties of Blast Furnace Slag Fineness Mortar according to Alkali Activator (알칼리 자극제 종류에 의한 고로슬래그 미분말 모르타르의 강도 특성)

  • Kim, Jong-Hee;Kim, Gyu-Yong;Shin, Kyoung-Su;Nam, Jeong-Soo;Koo, Kyung-Mo;Yun, Yong-Sang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.217-218
    • /
    • 2011
  • The advantages of blast-furnace slag concrete may include lower hydration heating velocity, restraint on concrete temperature increase, long-age strength improvement due to latent hydraulic reaction, improved water tightness, and repulsion to chemical erosion. These advantages contribute to the high quality of the blast-furnace slag concrete. However, the blast-furnace slag concrete has its limitations as well. These disadvantages may include retarded setting and elongated retention of mold due to the weak strength of early-age. Nevertheless, much research is currently under way to improve the aforementioned issues. To improve activity of blast furnace slag powder, alkaline irritants has been used. In this study, we analyze effect on activity fineness and rate of substitution of Alkali Activator toward activity.

  • PDF

Strength properties according to mixing type and ratio Alkali activator of Non-cement matrix using Paper Ash and Polysilicon sludge (폴리실리콘 슬러지와 제지애시를 활용한 무시멘트 경화체의 알칼리자극제 종류 및 혼입율에 따른 강도특성)

  • Sin, Jin-Hyun;Kim, Tae-Hyun;Kim, Heon-Tae;Lee, Dong-Hoon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.173-174
    • /
    • 2017
  • Recently, many experiments using industrial by-products have been going on in Korea and abroad. Most of the studies on blast furnace slag and fly ash have been conducted, and the blast furnace slag based two and three component experiments have been conducted in many places. Therefore, this study is an additional study of research using polysilicon sludge and paper ash, which is a study using existing industrial by-products based on blast furnace slag, as strength properties of alkali activator according to kind and mixing ratio and to obtain basic data do.

  • PDF

An Experimental Study on the Properties of Drying Shrinkage for Alkali-Activated Slag Mortar (알칼리 자극제를 혼입한 고로슬래그 모르타르의 건조수축 특성에 관한 실험적 연구)

  • Chun Jung-Hwan;Kim Jae-Hun;Jee Nam-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.97-100
    • /
    • 2006
  • This paper report the result of the investigation on the properties of drying shrinkage for alkali-activated slag mortar in different relative humidity Commonly we know that drying shrinkage means lost more moisture but the mechanism of drying shrinkage of alkali activated slag mortar is not entirely due to the quantity of weight loss of water from mortar. pore size distribution and the calcium silicate hydrate gel characteristics have a critical influence on the magnitude of drying shringkage to alkali activated slag mortar. For this investigation, Ca(OH)2, Na2SiO4 were as alkali activator with 5 dosages(6%, 9%, 12%, 15%, 20%) and curing condition were three different relative humidity(35%, 65%, 95%) at $20{\pm}3^{\circ}C$

  • PDF

Compressive Strength and Optimal Mixing Ratio of Alkali Activated Cement Concrete Containing Fly Ash (플라이 애쉬를 활용한 알칼리 활성시멘트 콘크리트의 압축강도와 최적혼합비)

  • Han, Sang-Ho;Park, Sang-Sook;Kang, Hwa-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.152-158
    • /
    • 2007
  • This is a fundamental research to utilize alkali activated cement(AAC) in concrete. The compressive strength of AAC concrete were measured for the various mixing ratios of activator/fly ash, and the mixing ratios of water glass, NaOH, and water among the activators. The mixing ratio of fine and coarse aggregates was maintained constantly. The relationships between the compressive strength and mixing ratios were analyzed to find the optimal mixing ratio of AAC concrete. As the results, the optimal mixing ratio of activator/fly ash in AAC concrete was 0.7, and that of water glass, NaOH, water among the activator was 4.0:1.0:2.5 for the maximum compressive strength.