• Title/Summary/Keyword: All-one polynomial

Search Result 97, Processing Time 0.024 seconds

Design of an LFSR Multiplier with Low Area Complexity (효율적인 공간 복잡도의 LFSR 곱셈기 설계)

  • 정재형;이성운;김현성
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.3
    • /
    • pp.85-90
    • /
    • 2003
  • This paper proposes a modular multiplier based on LFSR (Linear Feedback Shift Register) architecture with efficient area complexity over GF(2/sup m/). At first, we examine the modular exponentiation algorithm and propose it's architecture, which is basic module for public-key cryptosystems. Furthermore, this paper proposes on efficient modular multiplier as a basic architecture for the modular exponentiation. The multiplier uses AOP (All One Polynomial) as an irreducible polynomial, which has the properties of all coefficients with '1 ' and has a more efficient hardware complexity compared to existing architectures.

  • PDF

Design of LFSR Multipliers for Public-key Cryptosystem (공개키 암호 시스템을 위한 LFSR 곱셈기 설계)

  • 이진호;김현성
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.1
    • /
    • pp.43-48
    • /
    • 2004
  • This paper presents new architectures based on the linear feedback shia resister architecture over GF(2m). First we design a modular multiplier and a modular squarer, then propose an architecture by combing the multiplier and the squarer. All architectures use an irreducible AOP (All One Polynomial) as a modulus, which has the properties of all coefficients with '1'. The proposed architectures have lower hardware complexity than previous architectures. They could be. Therefore it is useful for implementing the exponentiation architecture, which is the con operation in public-key cryptosystems.

  • PDF

Efficient bit-parallel multiplier for GF(2$^m$) defined by irreducible all-one polynomials (기약인 all-one 다항식에 의해 정의된 GF(2$^m$)에서의 효율적인 비트-병렬 곱셈기)

  • Chang Ku-Young;Park Sun-Mi;Hong Do-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.115-121
    • /
    • 2006
  • The efficiency of the multiplier largely depends on the representation of finite filed elements such as normal basis, polynomial basis, dual basis, and redundant representation, and so on. In particular, the redundant representation is attractive since it can simply implement squaring and modular reduction. In this paper, we propose an efficient bit-parallel multiplier for GF(2m) defined by an irreducible all-one polynomial using a redundant representation. We modify the well-known multiplication method which was proposed by Karatsuba to improve the efficiency of the proposed bit-parallel multiplier. As a result, the proposed multiplier has a lower space complexity compared to the previously known multipliers using all-one polynomials. On the other hand, its time complexity is similar to the previously proposed ones.

The design of a secure hash function using Dickson polynomial

  • Nyang, Dae-Hun;Park, Seung-Joon;Song, Joo-Seok
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1995.11a
    • /
    • pp.200-210
    • /
    • 1995
  • Almost all hash functions suggested up till now provide security by using complicated operations on fixed size blocks, but still the security isn't guaranteed mathematically. The difficulty of making a secure hash function lies in the collision freeness, and this can be obtained from permutation polynomials. If a permutation polynomial has the property of one-wayness, it is suitable for a hash function. We have chosen Dickson polynomial for our hash algorithm, which is a kind of permutation polynomials. When certain conditions are satisfied, a Dickson polynomial has the property of one-wayness, which makes the resulting hash code mathematically secure. In this paper, a message digest algorithm will be designed using Dickson polynomial.

  • PDF

Design of Systolic Multipliers in GF(2$^{m}$ ) Using an Irreducible All One Polynomial (기약 All One Polynomial을 이용한 유한체 GF(2$^{m}$ )상의 시스톨릭 곱셈기 설계)

  • Gwon, Sun Hak;Kim, Chang Hun;Hong, Chun Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1047-1054
    • /
    • 2004
  • In this paper, we present two systolic arrays for computing multiplications in CF(2$\^$m/) generated by an irreducible all one polynomial (AOP). The proposed two systolic mays have parallel-in parallel-out structure. The first systolic multiplier has area complexity of O(㎡) and time complexity of O(1). In other words, the multiplier consists of m(m+1)/2 identical cells and produces multiplication results at a rate of one every 1 clock cycle, after an initial delay of m/2+1 cycles. Compared with the previously proposed related multiplier using AOP, our design has 12 percent reduced hardware complexity and 50 percent reduced computation delay time. The other systolic multiplier, designed for cryptographic applications, has area complexity of O(m) and time complexity of O(m), i.e., it is composed of m+1 identical cells and produces multiplication results at a rate of one every m/2+1 clock cycles. Compared with other linear systolic multipliers, we find that our design has at least 43 percent reduced hardware complexity, 83 percent reduced computation delay time, and has twice higher throughput rate Furthermore, since the proposed two architectures have a high regularity and modularity, they are well suited to VLSI implementations. Therefore, when the proposed architectures are used for GF(2$\^$m/) applications, one can achieve maximum throughput performance with least hardware requirements.

RING WHOSE MAXIMAL ONE-SIDED IDEALS ARE TWO-SIDED

  • Huh, Chan;Jang, Sung-Hee;Kim, Chol-On;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.411-422
    • /
    • 2002
  • In this note we are concerned with relationships between one-sided ideals and two-sided ideals, and study the properties of polynomial rings whose maximal one-sided ideals are two-sided, in the viewpoint of the Nullstellensatz on noncommutative rings. Let R be a ring and R[x] be the polynomial ring over R with x the indeterminate. We show that eRe is right quasi-duo for $0{\neq}e^2=e{\in}R$ if R is right quasi-duo; R/J(R) is commutative with J(R) the Jacobson radical of R if R[$\chi$] is right quasi-duo, from which we may characterize polynomial rings whose maximal one-sided ideals are two-sided; if R[x] is right quasi-duo then the Jacobson radical of R[x] is N(R)[x] and so the $K\ddot{o}the's$ conjecture (i.e., the upper nilradical contains every nil left ideal) holds, where N(R) is the set of all nilpotent elements in R. Next we prove that if the polynomial rins R[x], over a reduced ring R with $\mid$X$\mid$ $\geq$ 2, is right quasi-duo, then R is commutative. Several counterexamples are included for the situations that occur naturally in the process of this note.

Three-dimensional Shape Recovery from Image Focus Using Polynomial Regression Analysis in Optical Microscopy

  • Lee, Sung-An;Lee, Byung-Geun
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.411-420
    • /
    • 2020
  • Non-contact three-dimensional (3D) measuring technology is used to identify defects in miniature products, such as optics, polymers, and semiconductors. Hence, this technology has garnered significant attention in computer vision research. In this paper, we focus on shape from focus (SFF), which is an optical passive method for 3D shape recovery. In existing SFF techniques using interpolation, all datasets of the focus volume are approximated using one model. However, these methods cannot demonstrate how a predefined model fits all image points of an object. Moreover, it is not reasonable to explain various shapes of datasets using one model. Furthermore, if noise is present in the dataset, an error will be generated. Therefore, we propose an algorithm based on polynomial regression analysis to address these disadvantages. Our experimental results indicate that the proposed method is more accurate than existing methods.

Cellular Automata based on VLSI architecture over GF($2^m$) (GF($2^m$)상의 셀룰라 오토마타를 이용한 VLSI 구조)

  • 전준철;김현성;이형목;유기영
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.3
    • /
    • pp.87-94
    • /
    • 2002
  • This study presents an MSB(Most Significant Bit) Int multiplier using cellular automata, along with a new MSB first multiplication algorithm over GF($2^m$). The proposed architecture has the advantage of high regularity and a reduced latency based on combining the characteristics of a PBCA(Periodic Boundary Cellular Automata) and with the property of irreducible AOP(All One Polynomial). The proposed multiplier can be used in the effectual hardware design of exponentiation architecture for public-key cryptosystem.

ON ZERO DISTRIBUTIONS OF SOME SELF-RECIPROCAL POLYNOMIALS WITH REAL COEFFICIENTS

  • Han, Seungwoo;Kim, Seon-Hong;Park, Jeonghun
    • The Pure and Applied Mathematics
    • /
    • v.24 no.2
    • /
    • pp.69-77
    • /
    • 2017
  • If q(z) is a polynomial of degree n with all zeros in the unit circle, then the self-reciprocal polynomial $q(z)+x^nq(1/z)$ has all its zeros on the unit circle. One might naturally ask: where are the zeros of $q(z)+x^nq(1/z)$ located if q(z) has different zero distribution from the unit circle? In this paper, we study this question when $q(z)=(z-1)^{n-k}(z-1-c_1){\cdots}(z-1-c_k)+(z+1)^{n-k}(z+1+c_1){\cdots}(z+1+c_k)$, where $c_j$ > 0 for each j, and q(z) is a 'zeros dragged' polynomial from $(z-1)^n+(z+1)^n$ whose all zeros lie on the imaginary axis.

KRULL DIMENSION OF HURWITZ POLYNOMIAL RINGS OVER PRÜFER DOMAINS

  • Le, Thi Ngoc Giau;Phan, Thanh Toan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.625-631
    • /
    • 2018
  • Let R be a commutative ring with identity and let R[x] be the collection of polynomials with coefficients in R. There are a lot of multiplications in R[x] such that together with the usual addition, R[x] becomes a ring that contains R as a subring. These multiplications are from a class of functions ${\lambda}$ from ${\mathbb{N}}_0$ to ${\mathbb{N}}$. The trivial case when ${\lambda}(i)=1$ for all i gives the usual polynomial ring. Among nontrivial cases, there is an important one, namely, the case when ${\lambda}(i)=i!$ for all i. For this case, it gives the well-known Hurwitz polynomial ring $R_H[x]$. In this paper, we completely determine the Krull dimension of $R_H[x]$ when R is a $Pr{\ddot{u}}fer$ domain. Let R be a $Pr{\ddot{u}}fer$ domain. We show that dim $R_H[x]={\dim}\;R+1$ if R has characteristic zero and dim $R_H[x]={\dim}\;R$ otherwise.