• Title/Summary/Keyword: Alternating Torsional Stress

Search Result 2, Processing Time 0.018 seconds

Analysis of the Vibration Fatigue for the Diesel Engine and Reduction Gear Connecting Shaft in a Ship (선박용 감속기어-디젤엔진 연결축의 진동 피로파손 분석)

  • Han, HyungSuk;Lee, KyungHyun;Park, Sungho;Kim, ChungSik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.407-413
    • /
    • 2014
  • The diesel engine and reduction gear combination is one of the common propulsion system in a naval vessel. Since the diesel engine has torsional vibration caused by reciprocating motion of the mass and gas pressure force of the cylinder, high cycle torsional fatigue can be occurred. Therefore, ROK navy restricts the maximum stress of the propulsion shaft according to MIL G 17859D. In this paper, the root cause for the failure of the diesel engine and reduction gear connecting shaft occurred in typical naval vessel is investigated based on the measured bending and torsional moment according to MIL G 17859D procedure.

Strength Evaluation for Crankshaft and its Oil Hole of Medium Speed Diesel Engine (중형 디젤 엔진 크랭크축 및 오일 홀에 대한 강도평가)

  • An, Sung-Chan;Son, Jong-Ho;Kim, Byung-Joo;Kim, Jong-Suk
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1121-1126
    • /
    • 2003
  • Strength evaluation was carried out for the fillet and oil hole of crankshaft of medium speed diesel HiMSEN engine to verify initial concept design. Alternating torque obtained from torsional vibration analysis and radial force due to firing pressure were applied. It was assumed that the maximum alternating torque and radial force occur simultaneously. Weak points in view of fatigue are proceeding fillet and crank pin fillet area and the minimum normalized fatigue safety factor is 1.17 at crank pin fillet. The fatigue strength of the oil hole was evaluated to verify the effect of the surface roughness of the oil hole. As results, the specific level of the inner surface roughness and the polishing depth of the oil hole for sufficient fatigue strength was suggested. The maximum stress value and stress distribution at the inner surface of the oil hole can be easily estimated at initial design stage by the newly developed method.

  • PDF