• Title/Summary/Keyword: Altitude Test

Search Result 379, Processing Time 0.028 seconds

Altitude Engine Test (고공 환경 엔진 시험)

  • Lee Jin-Kun;Kim Chun-Taek;Yang Soo-Seok;Lee Dae-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.104-111
    • /
    • 2005
  • Gas turbine engines for aircraft are usually operated at the altitude condition which is quite different from the ground condition. In order to measure the precise performance data at the altitude condition, the engine should be tested at the altitude condition by a real flight test or an altitude simulation test with an altitude test facility. In this paper, the present state of the altitude test facility and the test technologies at urn(Korea Aerospace Research Institute) will be introduced.

Design of an Altitude Test Facility for Turbo Shaft Engine

  • Choi, Young-Hwan;Park, Sang-Joon;Lee, Joon-Won;Kim, Chun-Taek;Cha, Bong-Jun;Ahn, Iee-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.173-181
    • /
    • 2008
  • Gas turbine engine for aircraft are usually operated at the altitude condition which is quite different from the ground condition. In order to measure the precise performance data at the altitude condition, the engine should be tested at the altitude condition by a real flight test or an altitude simulation test with an altitude test facility. In this paper describes the design of altitude test facility for turbo shaft engine. This facility will be located in test cell #2 at the Korea Aerospace Research Institute. Test Cell #2 will be used for altitude testing engines with mass flow rate up to 40kg/s and inlet temperatures in the range from $-65^{\circ}C$ to $200^{\circ}C$. The existing compressor/exhauster station with heater & cooler system will be used to simulate altitude conditions in Test Cell #2.

  • PDF

Development of Test Stand for Altitude Engine Test of Reciprocating Engine (왕복동 엔진의 고도성능시험을 위한 시험장치 개발)

  • Lee, KyungJae;Yang, InYoung;Kim, ChunTaek;Kim, DongSik;Baek, Cheulwoo;Yang, GyaeByung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.563-571
    • /
    • 2017
  • Test stand for altitude engine test of reciprocating engine was designed, manufactured and validated by preliminary test and simple calculation. These test stand designed to interface with Altitude turbo-shaft engine test facility of Korea Aerospace Research Institute. Many limiting condition for altitude test of reciprocating engine are assumed and test stand was developed to satisfy those limits. Test stand design specially focused on a altitude, Mach number and fuel temperature control for reciprocating engine altitude test with smaller air and fuel flow than turbo-shaft engine.

  • PDF

High Altitude Test Facility for Small Scale Liquid Rocket Engine (소형 액체로켓엔진 고공환경 모사시험 설비)

  • Kim, Taewoan;Kim, Wanchan;Kim, Sunjin;Han, Yeoungmin;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.73-82
    • /
    • 2015
  • A high altitude test facility which includes supersonic diffuser and ejector has been developed to simulate atmospheric pressure at 25 km using a 500 N class small scale liquid rocket engine. Also high altitude simulation test for the small scale liquid rocket engine was performed to verify the facility's performance. The experimental facility consists of high altitude simulation device, propellants supply system and coolant supply system. Low pressure condition corresponding to about 27 km(0.021 bar) altitude atmosphere was successfully simulated and a small scale liquid rocket engine thrust level was confirmed at the simulated condition by the high altitude test facility verification test.

Development of Test Stand for Altitude Test of Reciprocating Engine (왕복동 엔진의 고도성능시험을 위한 시험장치 개발)

  • Lee, Kyung-Jae;Yang, Inyoung;Kim, Chun Taek;Kim, Dongsik;Baek, Cheulwoo;Yang, Gyaebyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.119-127
    • /
    • 2018
  • A test stand for an altitude test of reciprocating engine was designed, manufactured and validated by preliminary tests and simple calculations. The test stand was designed to interface with the altitude turbo-shaft engine test facility of Korea Aerospace Research Institute. Many limiting conditions for altitude test of reciprocating engine were assumed and the test stand was developed to satisfy these limitations. The test stand design was focused especially on the altitude, Mach number and fuel temperature control for reciprocating engine altitude tests with smaller air and fuel flow than those of turbo shaft engines.

Thrust Measurement System for High Altitude Simulation Test of the KSLV-I Kick Motor (KSLV-I 킥모터 개발을 위한 고공환경모사시험용 추력측정장치)

  • Lee, Jung-Ho;Cho, Sang-Yeon;Cho, Kie-Joo;Jung, Dong-Ho;Lee, Han-Ju;Oh, Seung-Hyub;Yoon, Kyung-Youl;Kim, Dong-Cheol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.428-431
    • /
    • 2008
  • Korea Aerospace Research Institute(KARI) is achieving the Korea Space Launch Vehicle(KSLV) program according to National Space Technology Development Program. KSLV-I will be composed to liquid propellant(first stage) and solid propellant(second stage) propulsion system. The propulsion system of KSLV-I second stage is solid kick motor with high expansion ratio and its starting altitude is 300km high. In order to verify the performance of upper stage propulsion system designed to operate in the upper atmosphere, test facility which can simulate high altitude is needed. High Altitude Simulation Test Facility is composed to Thrust Measurement System, Control & Measurement system, Diffuser, SKID for cooling water supply to diffuser, CCTV, fire protection system and so on. This paper introduces TMS adapted to High Altitude Simulation Test for KSLV-I Kick Motor Development and results of hot firing test for its performance verification.

  • PDF

Study on Liquid Rocket Engine High Altitude Simulation Test (액체로켓엔진 고공환경 모사시험 연구)

  • Kim, Seung-Han;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.733-736
    • /
    • 2010
  • Korea Aerospace Research Institute (KARI) performed the preliminary design of liquid rocket engine high-altitude simulation firing test facility for the development and qualification of LRE for the 2nd stage of KSLV-II. The engine high-altitude simulation firing test facility, which are to be constructed at Goheung Space Center, will provide liquid oxygen and kerosene to enable the high-altitude simulation firing test of 2nd stage engine at ground test facility. The high-altitude environment is obtained using a supersonic diffuser operated by the self-ejecting jet from the liquid rocket engine.

  • PDF

Reliability of Measurement Estimation in Altitude Engine Test (엔진 고도 시험의 측정 신뢰성 평가)

  • Lee, Jin-Kun;Yang, In-Young;Yang, Soo-Seok;Kwak, Jae-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 2006
  • The altitude engine test is a sort of engine performance tests carried out to measure the performance of a engine at the simulated altitude and flight speed environments prior to that at the flight test. During the performance test of a engine, various values such as pressures and temperatures at different positions, air flow rate, fuel flow rate, and the load by thrust are measured. These measured values are used to derive the representative performance values such as the net thrust and the specific fuel consumption through a momentum equation. Hence each of the measured values has certain effects on the total uncertainty of the performance values. In this paper, the combined standard uncertainties of the performance variables at the engine test were estimated by the uncertainty analysis of the measurement values and the repeatability and reproducibility of the altitude test measurement were assessed by the analysis of variation on the repeated test data with different operator groups.

  • PDF

Development and Performance Test of Vacuum Facility at the CNU for High Altitude Space Environment Test (충남대학교 고고도 우주환경모사 진공설비의 구축 및 성능설험)

  • Jung, Sung-Chul;Kim, Youn-Ho;Shin, Kang-Chang;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.45-48
    • /
    • 2007
  • Vacuum facility is required for high altitude space environment test to develop small thruster. We, at Chungnam National University, developed vacuum test facility up to $10^{-5}$ torr to simulate 100${\sim}$120 km altitude environment. In this paper, we present some preliminary performance test results.

  • PDF

Uncertainty Analysis and Improvement of an Altitude TestFacility for Small Jet Engines

  • Jun, Yong-Min;Yang, In-Young;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.46-56
    • /
    • 2004
  • The verification and improvement of the measurement uncertainty have beenperformed in the altitude test facility for small gas turbine engines, which was built atthe Korea Aerospace Research Institute (KARI) in October 1999. This test is performedwith a single spool turbojet engine at several flight conditions. This paper discussesthe evaluation and validation process for the measurement uncertainty improvements usedin the altitude test facility. The evaluation process, defined as tests before the facilitymodification, shows that the major contnbutors to the measurement uncertainty are theflow meter discharge coefficient, the inlet static and total pressures, the cell pressureand the fuel flow rate. The measurement uncertainty is focused on the primary parametersof the engine performance such as airflow rate, thrust and specific fuel consumption (SFC).The validation process, defined as tests after the facility modification, shows that themeasurement uncertainty, in seal level condition, is tmproved to the acceptable level throughthe facility modification. In altitude test conditions, the measurement uncertainties arenot improved as much as the uncertainty in sea level condition.