• Title/Summary/Keyword: Aluminum

Search Result 7,295, Processing Time 0.04 seconds

Formation of Aluminum Hydroxides by Hydrolysis of Nano and Micro Al Powders (나노 및 마이크로 알루미늄의 가수분해에 의한 알루미늄 수산화물의 형성)

  • Oh Young Hwa;Lee Geunhee;Park Joong Hark;Rhee Chang Kyu;Kim Whung Whoe;Kim Do Hyang
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.186-191
    • /
    • 2005
  • A formation of aluminum hydroxide by hydrolysis of nano and micro aluminum powder has been studied. The nano aluminum powder of 80 to 100 nm in diameter was fabricated by a pulsed wire evaporation (PWE) method. The micro powder was commercial product with more than $10\;{\mu}m$ in diameter. The hydroxide type and morphology depending on size of the aluminum powder were examined by several analyses such as XRD, TEM, and BET. The hydrolysis procedure of micro aluminum powder was different from that of nano aluminum powder. The nano aluminum powder after immersing in the water was transformed rapidly to a nano fibrous boehmite, accompanying with a remarkable temperature increase, and then further transformed slowly to a stable bayerite. However, the micro powder was changed to the stable bayerite slowly and directly. The formation of fibrous aluminum hydroxide from nano aluminum powder might be due to the fine cracks which were formed by hydrogen gas pressure on the surface hydroxide layer during hydrolysis. The nano powder with large specific surface area and small size reacted more actively and faster than the micro powder, and transformed to meta-stable hydroxide in relatively short reaction time. Therefore, the formation of fibrous boehmite is special characteristic of hydrolysis of nano aluminum powder.

Axial Collapse Characteristics of Aluminum CFRP Compound Square Members for Vehicle Structural Members (차체구조부재용 알루미늄 CFRP 혼성사각부재의 축 압궤 특성)

  • Lee, Kil-Sung;Cha, Cheon-Seok;Pyeon, Seok-Beom;Yang, In-Young;Sim, Jae-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1329-1335
    • /
    • 2005
  • An aluminum or CFRP (Carbon Fiber ReinfDrced Plastics)is representative one of light-weight materials but its axial collapse mechanism is different from each other. The aluminum member absorbs energy by stable plastic deformation, while the CFRP member absorbs energy by unstable brittle failure with higher specific strength and stiffness than those in the aluminum member. In an attempt to achieve a synergy effect by combining the two members, aluminum CFRP compound square members were manufactured, which are composed of aluminum members wrapped with CFRP outside aluminum square members with different fiber orientation angle and thickness of CFRP, and axial collapse tests were performed fur the members. The axial collapse characteristics of the compound members were analyzed and compared with those of the respective aluminum members and CFRP members. Test results showed that the collapse of the aluminum CFRP compound member complemented unstable brittle failure of the CFRP member due to ductile characteristics of the inner aluminum member. The collapse modes were categorized into four modes under the iuluence of the fiber orientation angle and thickness of CFRP. The absorbed energy Per unit mass, which is in the light-weight aspect was higher in the aluminum CFRP compound member than that in the aluminum member and the CFRP member alone.

Development of Loess Composite for the Control of Phosphorus Release from Lake Sediments (호소 퇴적층으로부터 용출되는 인 제거를 위한 황토 복합체 개발)

  • Shin, Gwan-Woo;Kim, Keum-Yong;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • In this study, loess composites, loess with lanthanum and with aluminum, were made and evaluated for treatment of phosphorus removal in natural water system. Desiccation method for production of loess composite was superior to centrifugation method in obtaining high concentrated composites of lanthanum and aluminum. Washing of loess lanthanum composite by water did not deteriorat the lanthanum concentration in the composite, but this lowered the aluminum concentration of loess aluminum composite. Total of 15 and 37.5% of aluminum contents were removed after first washing treatment in aluminum loess of 0.05% and 0.1% respectively. However, no more aluminum loss was monitored with increase of washing times. Phosphorus removal efficiencies were not decreased with washed loess aluminum composite. Phosphorus removal was successfully achieved by adsorption of phosphate to loess composite at pH range of 5.0 ~ 8.0. Freundlich and Langmuir adsorption isotherm was observed in the adsorption of phosphate for loess composite. Dosages of 0.05% and 0.1% lanthanum composite for 95% of phosphorus removal could reduce its usage amount to 25% and 50%, respectively, comparing with dosage of loess alone. Dosages of 0.05% and 0.1% aluminum composite could reduce its usage amount to 48% and 63%, respectively.

Synthesis of aluminum contained polycarbosilane and preparation of Si-Al-C-O nanocomposite fiber (Aluminum이 첨가된 polycarbosilane 합성 및 Si-Al-C-O 나노복합섬유 제조)

  • 신동근;류도형;김영희;김형래;정영근
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.240-240
    • /
    • 2003
  • SiC 섬유의 고온강도를 향상시키기 위한 소결조제로 boron, aluminum 등을 사용할 수 있다. 본 연구에서는 폴리카보실란에 aluminum precursor를 첨가한 후 중합반응을 거쳐 Al-contained polycarbosilane을 합성하였다. 합성된 Al-contained polycarbosilane을 용융방사하여 섬유화 하고 열분해 공정을 통해 Si-Al-C-O 나노복합 섬유를 제조하였다. 먼저 aluminum butoxide와 polycarbosilane(commercial)을 200m1 xylene에 용해시켜 14$0^{\circ}C$에서 1시간 동안 reflux하였다. evaporator를 이용하여 xylene를 제거한 후 autoclave에서 25$0^{\circ}C$/30$0^{\circ}C$ 중합과정을 통해 가교결합 시켰다 이와 같이 합성된 시료는 ICP분석을 통해 aluminum 함량을 확인하였고 FT-IR(Fig.1) 및 GPC분석(Fig.2)으로부터 화학구조 및 분자량변화를 확인하였다. aluminum 첨가량이 증가함에 따라 Si-H/Si-$CH_3$의 결합크기의 비가 감소하였으며 이로부터 aluminum butoxide와 polycarbosilane의 가교결합이 이루어진 것으로 보이며 중합 후 분자량의 증가 또한 가교결합에 의한 결과로 사료된다 열무게감량(TGA) 측정 결과는 40$0^{\circ}C$부터 유기리간드의 분해가 일어나며 80$0^{\circ}C$이상에서 세라믹화 과정이 완료되었음을 알 수 있었다 또한 aluminum 첨가량이 증가함에 따라 세라믹 수율도 증가하였음을 확인하였다. 합성된 aluminum-contained polycarbosilane은 20$0^{\circ}C$에서 1시간 동안 불융화과정을 거쳐 환원 및 진공 분위기에서 고온 열처리하였으며 이로부터 얻어진 시료에 대해 XRD분석을 수행하였다. SEM과 TEM을 이용하여 미세구조를 관찰하였다.

  • PDF

Management of OELs for Aluminum Compounds with Completely Revised ACGIH TLVs (ACGIH TLV가 전면 개정된 알루미늄 화합물의 노출기준 관리)

  • Park, Seung-Hyun;Kim, Se-dong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.3
    • /
    • pp.249-255
    • /
    • 2020
  • Objective: The purpose of this study was to provide technical information about the management of occupational exposure limits(OELs) for substances with completely revised ACGIH TLVs. Methods: The history of ACGIH TLVs for aluminum compounds, the reason for the complete revision of the related ACGIH TLV in 2008, and OELs for them in respective countries were reviewed. In addition, the results of a 2019 work environment assessment for aluminum compounds in Korea were reviewed. Results: In 1979, the ACGIH set up the TLVs for aluminum compounds considering types of compounds such as metal dust, pyro powders, welding fumes, soluble salts, alkyls, and aluminum oxide. However, in 2008 the ACGIH withdrew the TLVs for all types of aluminum and its compounds and adopted new TLVs for aluminum metal and insoluble compounds. This can cause confusion in many countries in the management of exposure to aluminum compounds because they adopt or refer to the ACGIH TLVs. Conclusion: Although Korea is setting occupational exposure limits by referring to the ACGIH's TLVs, it is necessary to sufficiently review whether it is necessary to accept the TLVs as they are if a TLV is completely changed, like took place with the revision of aluminum compounds in 2008.

Bending Performance Evaluation of Reinforced Aluminum Square Tube Beams (보강 알루미늄 사각관 보의 굽힘 성능평가)

  • Lee Sung-Hyuk;Choi Nak-Sam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.171-180
    • /
    • 2005
  • Bending performances of aluminum square tube beams reinforced by aluminum plates under three point bending loads have been evaluated using experimental tests combined with theoretical and finite element analyses. A finite element simulation for the three-point bending test was performed. Basic properties of aluminum materials used for initial input data of the finite element simulation were obtained from the true stress-true strain curves of specimens which had been extracted from the Al tube beams. True stresses were determined from applied loads and cross-sectional area records of a tensile specimen with a rectangular cross-section by real-time photographing, and true strains were obtained from in-situ local elongation measurements of the specimen gage portion by the multi-point scanning laser extensometer. Six kinds of aluminum tube beam specimens adhered by aluminum plates were employed fur the bending test. The bending deformation behaviors up to the maximum load described by the numerical simulation were in good agreement with experimental ones. After passing the maximum load, reinforcing plate was debonded from the aluminum tube beam. An aluminum tube beam strengthened by aluminum plate on the upper web showed an excellent bending capability.

Inhibition of Adventitious Root Growth in Boron-Deficient or Aluminum-Stressed Sunflower Cuttings

  • Hong, Jung-Hee;Go, Eun-Jung;Kim, Tae-Yun
    • Journal of Environmental Science International
    • /
    • v.12 no.11
    • /
    • pp.1189-1196
    • /
    • 2003
  • The effect of boron and aluminum on the development of adventitious roots was studied in sunflower cuttings. Three-day-old seedlings were de-rooted and grown in nutrient solutions with or without boron and supplemented with different concentrations (from 50 to 700 ${\mu}$M) of aluminum. The number and length of the adventitious roots and proline content in adventitious roots in response to insufficient boron and aluminum stress were determined periodically. The micronutrient boron caused the development of numerous roots in the lower parts of the hypocotyl. A dose-response of boron-induced rooting yielded an optimum concentration of 0.1 mM boron. In the absence of boron, in the majority of the adventitious roots, a significant inhibition was observed with or without aluminum, indicating that the most apparent symptom of boron deficiency is the cessation of root growth. Increasing concentrations of aluminum caused progressive inhibition of growth and rooting of the hypocotyls, and a parallel increase in proline levels of adventitious roots. Supplemental boron ameliorated the inhibitory effect of aluminum, suggesting that aluminum could inhibit root growth by inducing boron deficiency. Ascorbate added to medium in the absence of boron improved root growth and induced a significant decrease in proline levels. These findings suggest that adventitious root growth inhibition resulting from either boron deficiency or aluminum toxicity may be a result of impaired ascorbate metabolism.

Mechanical properties of friction stir welded aluminum alloys 5083 and 5383

  • Paik, Jeom-Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.39-49
    • /
    • 2009
  • The use of high-strength aluminum alloys is increasing in shipbuilding industry, particularly for the design and construction of war ships, littoral surface craft and combat ships, and fast passenger ships. While various welding methods are used today to fabricate aluminum ship structures, namely gas metallic arc welding (GMAW), laser welding and friction stir welding (FSW), FSW technology has been recognized to have many advantages for the construction of aluminum structures, as it is a low-cost welding process. In the present study, mechanical properties of friction stir welded aluminum alloys are examined experimentally. Tensile testing is undertaken on dog-bone type test specimen for aluminum alloys 5083 and 5383. The test specimen includes friction stir welded material between identical alloys and also dissimilar alloys, as well as unwelded (base) alloys. Mechanical properties of fusion welded aluminum alloys are also tested and compared with those of friction stir welded alloys. The insights developed from the present study are documented together with details of the test database. Part of the present study was obtained from the Ship Structure Committee project SR-1454 (Paik, 2009), jointly funded by its member agencies.

Forming limits of aluminum tubes in tube hydroforming (알루미늄 튜브 하이드로포밍의 성형한계)

  • 조완제;이상영;김영석;이상용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.244-248
    • /
    • 2003
  • Recently social demands of fuel economy and environmental regulations require the development of light materials and new manufacturing technologies. In this point, the aluminum tube hydroforming process which is satisfied with good strength-to-weight ratio and recyclability is innovative concept. However the level of the aluminum tube hydroforming technology is low in comparison with that of steel tube hydroforming. In this paper, the hydroformability of aluminum tubes in different heat treatments is presented. Theoretical results for forming limits of the wrinkling and bursting are compared with experimental results of aluminum tubes.

  • PDF

Studies on the Prevention of Damages on the Carbody of Aluminum Rolling Stock (알루미늄 철도차량 차체의 손상 방지를 위한 연구)

  • 서승일
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.3
    • /
    • pp.181-186
    • /
    • 2002
  • Aluminum rolling stocks have been developed for six years in Korea and commercial trainsets are being constructed by the carbuilder. Aluminum alloys are sensitive to various imperfections. In this paper, damages and failures of the aluminum carbody taking place during the process of development are investigated and accumulated data are released. Also, remedies for the failures are suggested and design changes are introduced. It is expected that all informations can contribute to construction of reliable and safe aluminum rolling stocks.