• Title/Summary/Keyword: Aluminum sheet

Search Result 383, Processing Time 0.026 seconds

THE APPLICATION OF ALUMINUM SHEET FOR THE PROTECTIVE HEAT SHIELD (ALLMINUM PROTECTIVE HEAT SHIELD 적용연구)

  • 이중윤;이호기;이경남
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.166-173
    • /
    • 1996
  • There are kinds of materials for protective heat shield, i.e.Zn-coated steel, AI-coated steel and aluminum alloy sheets. This study compare formability, corrosion resistance, heat protectability, weight, and cost of these materials for heat protective shield. Generally aluminum alloy sheets are less formable than steel sheets, but A1100 alloy sheet shows almost same press quality of steel parts, using the press dies which producing steel parts. The heat shields using aluminum alloy sheet and steel sheet show almost same heat protectibility. It is the conclusion that Zn-coated merit, and AI-coated steel sheet and aluminum alloy sheet can be used to protect functional corrosion in severely corrosive market area. The material cost of AI-coated steel sheet and aluminum alloy sheet for a mid-size car is almost same, so aluminum alloy sheet is more recommendable in the point of weight reduction of vehicle.

  • PDF

A Study on the Springback Characteristics and Bracket Formabilities Enhancement of Aluminum Alloy Sheets for Autobody Application (차체용 알루미늄합금 판재의 스프링백 특성과 브래킷 성형성 향상에 관한 연구)

  • 최문일;강성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.64-76
    • /
    • 1997
  • This paper deals with development of brackets by using aluminum alloy sheets which is indispensable for weight reduction of autobody. The press formability of aluminum alloy sheet is estimated by means of tensile test, V bending test, sample manufacturing test and photograph of microstructure. The results show that the elongation, strength, work hardening exponent, plastic anisotropy coefficient of Al 6***series are better than those of Al 5***series, but for general press formability, Al 5***series are better than Al 6***series due to lower yield strength. Since most of mechanical properties of aluminum sheet are generally inferior to those of cold-rolled steel sheet, shape fixability and press formability of aluminum sheet are very poor. For making components of autobody by use of die for steel sheet application, it is essential that die should be nodified for least bending and stretching. With the modified die for aluminum, it could be possible to make brackets, the component of autobody. Microstructure of Al 5***series has fine grain and small the 2nd phase and that of Al 6***series has relatively coarse grain. Therefore, it seems that fine grain and small the 2nd phase of Al 5***series is one of the factor of lower yield strength, resistance to stamping work, formation of Luder's line.

  • PDF

Study on the Yield Locus of Aluminum Alloy Sheet Using Biaxial Cruciform Specimens (2축 십자형 시편을 이용한 알루미늄 합금 판재의 항복곡면에 대한 연구)

  • Shin, H.D.;Park, J.G.;Park, C.D.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.416-421
    • /
    • 2009
  • The applications of the aluminum alloy sheets to the auto-body panels are dramatically increasing for weight reduction of the automobiles. However, low formability of the aluminum alloy sheet compared to the steel sheet can be obstacles in tool manufacturing processes. Therefore, many of yield criteria for the anisotropic materials such as the aluminum alloy sheet have been observed. In this study, the biaxial tensile test and FLD test for the aluminum alloy sheet are performed. The results are compared with Hill's 1948 and Hill's 1990 models by means of theoretical predictions. Finite element analysis was also performed using the proposed method for the real panel.

Study on the Yield Locus of Aluminum alloy sheet Using Biaxial Cruciform Specimens (2축 십자형 시편을 이용한 알루미늄 합금 판재의 항복곡면에 대한 연구)

  • Shin, H.D.;Park, J.G.;Park, C.D.;Ro, H.C.;Youn, K.T.;Lim, H.T.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.164-167
    • /
    • 2009
  • The applications of the aluminum alloy sheets to the auto-body panels are dramatically increasing for weight reduction of the automobiles. However, low formability of the aluminum alloy sheet compare to the steel sheet can be obstacles in tool manufacturing process. Therefore, much of yield criteria for the anisotropic material such as the aluminum alloy sheet have been observed. In this study, the biaxial tensile test and FLD test for the aluminum alloy sheet are performed. The results are compared with Hill's 1948 and Hill's 1990 model by means of theoretical predictions. Finite element analysis also performed using the proposed method for the real panel.

  • PDF

Effect of Groove Pressing on Deformation Texture in Aluminum (그루브 압축이 알루미늄 집합조직에 미치는 영향)

  • 김영석;박종진
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.421-427
    • /
    • 2000
  • The present study has focused on the development of shear textures during groove pressing in an aluminum alloy sheet. The shear components 23 and 13 developed during the groove pressing process. The process consisting of two steps of grooving and flattening each effectively gave rise to a high shear deformation In the sheet without reduction in thickness. The main texture component obtained from the process was the rotated Bs-orientation. The evolution of shear components during the groove pressing caused an increase in R-value of aluminum sheet comparing to a normally processed rolled sheet.

  • PDF

Effects of foam core density and face-sheet thickness on the mechanical properties of aluminum foam sandwich

  • Yan, Chang;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1145-1156
    • /
    • 2016
  • To study the effects of foam core density and face-sheet thickness on the mechanical properties and failure modes of aluminum foam sandwich (AFS) beam, especially when the aluminum foam core is made in aluminum alloy and the face sheet thickness is less than 1.5 mm, three-point bending tests were investigated experimentally by using WDW-50E electronic universal tensile testing machine. Load-displacement curves were recorded to understand the mechanical response and photographs were taken to capture the deformation process of the composite structures. Results demonstrated that when foam core was combined with face-sheet thickness of 0.8 mm, its carrying capacity improved with the increase of core density. But when the thickness of face-sheet increased from 0.8 mm to 1.2 mm, result was opposite. For AFS with the same core density, their carrying capacity increased with the face-sheet thickness, but failure modes of thin face-sheet AFS were completely different from the thick face-sheet AFS. There were three failure modes in the present research: yield damage of both core and bottom face-sheet (Failure mode I), yield damage of foam core (Failure mode II), debonding between the adhesive interface (Failure mode III).

Sectional Finite Element Analysis of Forming Process of Aluminum Sandwich Sheet by Bending Augmented Membrane Elements (굽힘 첨가 박막요소에 의한 알루미늄 샌드위치 판재 성형공정의 단면 유한요소 해석)

  • 이재경;금영탁;유용문;이명호
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.91-100
    • /
    • 2001
  • A sectional FEA program is developed lot analyzing forming processes of sandwich sheets, which are intensively used recently as a lightweight material of an automobile body. The aluminum sandwich sheet consists of two aluminum skins and a polyprophylen core in between. The aluminum sandwich sheet is dominantly effected by the bending effects in small radius of curvature, so that an appropriate description of bending effects is required to analyze the forming processes. For the evaluation of bending effects, the bending equivalent forces are calculated from the bending moment computed using the curvature of the tool and are added to the membrane stretch forces. To verify the validity of the developed program the sectional FEA results in stretch/draw forming Processes of a square cup and draw forming Processes of an outer hood panel were compared with the measurements.

  • PDF

Microstructural Evolution of a Cold Roll-Bonded Multi-Layer Complex Aluminum Sheet with Annealing

  • Jo, Sang-Hyeon;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.72-79
    • /
    • 2022
  • A cold roll-bonding process using AA1050, AA5052 and AA6061 alloy sheets is performed without lubrication. The roll-bonded specimen is a multi-layer complex aluminum alloy sheet in which the AA1050, AA5052 and AA6061 sheets are alternately stacked. The microstructural evolution with the increase of annealing temperature for the roll-bonded aluminum sheet is investigated in detail. The roll-bonded aluminum sheet shows a typical deformation structure in which the grains are elongated in the rolling direction over all regions. However, microstructural evolution of the annealed specimen is different depending on the type of material, resulting in a heterogeneous microstructure in the thickness direction of the layered aluminum sheet. Complete recrystallization occurs at 250 ℃ in the AA5052 region, which is lower by 100K than that of the AA1050 region. Variation of the misorientation angle distribution and texture development with increase of annealing temperature also differ depending on the type of material. Differences of microstructural evolution between aluminum alloys with increase of annealing temperature can be mainly explained in terms of amounts of impurities and initial grain size.

Forming Condition for Automotive Body Outer Panel using Aluminum Alloy Sheet for Improved Dent Resistance (차체 외판 부품의 덴트 특성 향상을 위한 알루미늄 판재의 성형조건에 관한 연구)

  • Ko, S.J.;Kim, T.J.;Kim, I.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.420-426
    • /
    • 2011
  • Dent resistance is determined by both shape characteristics, i.e., local radius of curvature and sheet thickness, and material properties such as yield strength. This work presents results of a study on the effect of work hardening and bake hardening on dent resistance of aluminum alloy sheet parts by considering the forming condition and baking temperature.

A Study on the Forming Process of High-strength Aluminum Sheet for Electric Vehicle Heat Exchanger Separator Through Parametric Analysis (인자 분석을 통한 전기차 열교환기 분리판용 고강도 알루미늄 판재 성형 연구)

  • Jung, S.H.;Yang, J.H.;Kim, Y.B.;Lee, K.J.;Kim, B.H.;Lee, J.S.;Bae, G.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.57-63
    • /
    • 2022
  • The current study performed formability analysis of a heat exchanger separator for an electric vehicle to apply a high-strength aluminum sheet based on parametric analysis. Mechanical properties for sheet metal forming simulation were evaluated by tensile test, bulge test, and Nakajima test. Two-stage crash forming was established by considering the mass production process using conventional low-strength aluminum sheets. In this study, FEM for the two-stage forming process was conducted to optimize the corner radius and height for improving the formability. In addition, the possibility of a one-stage forming process application was confirmed through FEM. The prototype of the sample was manufactured as FEM results to validate the parametric analysis. Finally, this result can provide a one-stage forming process design method using the high-strength aluminum sheet for weight reduction of a heat exchanger separator for an electric vehicle.