• Title/Summary/Keyword: Amberlyst-15

Search Result 33, Processing Time 0.026 seconds

A Study over Catalytic Behavior Octane Enhancer, TAME Synthesis with Ion Exchange Resin Catalysts (이온교환수지 촉매를 이용한 옥탄가 향상제인 TAME 합성반응의 연구)

  • Park, Jin-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.832-842
    • /
    • 1996
  • TAME synthesis was studied in a fixed bed reactor with 3 different types of exchanged resins i.e, Amberlyst-15, Amberlyst-15(wet) and Amberlyst XN-1010. Amberlyst-15 has highest activity, presumably due to the higher reaction participation of the inner active sites of gel shape microparticular resin structure. The optimum reaction conditions for TAME synthesis were found as follows ; reaction temperature of $135^{\circ}C$, molar ratio(MeOH/I.A.A) of 1.0~4.0 and W/F of 2.0~4.0 gr.-cat. hr/gr.-mole. The cross-linking bond of styrene divinyl benzene was observed at $2{\theta}=20$ in XRD pattern. The DSC analysis showed that the thermal stability was in order of Amberlyst-15>Amberlyst-15(wet)>Amberlyst XN-1010. The apparent activation energies of TAME synthesis reaction with Amberlyst-15, Amberlyst-15(wet) and Amberlyst XN-1010 were 12.36, 12.46 and 14.72 kcal/mole, respectively.

  • PDF

Synthesis of ETBE as an Octane Enhancer for Gasoline over Macroreticular Robin Catalysts (그물구조 수지 촉매상에서 가솔린 옥탄가 향상제인 ETBE 합성)

  • Park, Jin-Hwa;Lee, Jin-Hyung;Kim, Jae-Seung
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.825-835
    • /
    • 1994
  • Synthesis of ETBE as an octane number enhancer from ethanol and isobutene in a flow reactor under atmospheric pressure was studied. Amberlyst-15 and Amberlyst XN-1010 were used as catalysts within the temperature range of $70-140^{\circ}C$. The activity of Amberlyst 15 was higher than that of Amberlyst XN-1010. The reaction rate data obtained under differential reactor condition were tested by a linear regression method to determine the reaction mechanism and kinetic parameters. The ETBE synthesis reaction seems to be proceeded via the LHHW(Langmuir-Hinshelwood-Hougen-Watson) machanism. The activation energy of the surface reaction was estimated by the reaction rate constants as well as the adsorption equilibrium constants. Apparent activation energies are 18.64 and 24.19kcal/mol for Amberlyst-15 and Amberlyst XN-1010, respectively.

  • PDF

Liquid-phase Dehydration of 1-Phenylethanol to Styrene over an Acidic Resin Catalyst

  • Khan, Nazmul Abedin;Hwang, Jin-Soo;Jhung, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1327-1330
    • /
    • 2011
  • Dehydration of 1-phenylethanol to produce styrene has been studied in liquid phase with three solid acid catalysts such as H-ZSM-5, H-Y and Amberlyst-15. Amberlyst-15 shows the highest conversion and styrene yield, suggesting the applicability of a resin catalyst in the dehydration. The good performance of the Amberlyst-15 may be due to high acid concentration and ready diffusion of reactants and products. A possible reaction scheme (such as the formation of styrene from diphenylethylether) has also been suggested.

Scale-up Study of Heterogeneous Catalysts for Biodiesel Production from Nepalese Jatropha Oil (네팔산 자트로파 오일로부터 바이오디젤 제조를 위한 불균일계 촉매 Scale-up 연구)

  • Sim, Minseok;Lee, Seunghee;Kim, Youngbin;Ku, Huiji;Woo, Jaegyu;Joshi, Rajendra;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.198-204
    • /
    • 2021
  • This study focused on a two-step process using heterogeneous catalysts to produce biodiesel using Nepalese jatropha oil as a raw material. As a first step, the effect of the repetitive regeneration number of Amberlyst-15 on the esterification reaction of FFA in jatropha oil was investigated. Second, the possibility of a transesterification reaction scale-up using a dolomite bead catalyst was tested. Using 120 kg of jatropha seeds from Nepal, 30 L (27 kg) of jatropha oil was obtained, and the jatropha oil yield from the seeds was about 25.0 wt%. The acid value and FFA content of jatropha oil were measured to be 11.3 mgKOH g-1 and 5.65%, respectively. As a result of the esterification reaction of jatropha oil using the Amberlyst-15 catalyst in the form of beads, the acid value of the reaction product could be lowered to 0.26 mgKOH g-1 when the fresh Amberlyst-15 catalyst was used. As the regeneration of the Amberlyst-15 catalyst is repeated, the catalyst has been deactivated, and the esterification reaction performance has deteriorated. The cause of the deactivation seems to be due to the catalyst being broken and impurities being deposited. It was confirmed that the Amberlyst-15 catalyst could be reused up to 5 times for the esterification reaction of jatropha oil. In the second step, the transesterification reaction, a dolomite catalyst, was mass-produced and used in the form of beads. By transesterifying the pretreated jatropha oil in a spinning catalyst basket reactor equipped with 90 g of dolomite bead catalyst, 89.1 wt% of biodiesel yield was obtained in 2 hours after the start of the reaction, which was similar to the transesterification of soybean oil under the same conditions.

Production of Biodiesel from High Acid Value Oils using Amberlyst-15 (Amberlyst-15를 이용한 산가가 높은 유지로부터 바이오디젤의 생산)

  • Sim, Yeon-Ju;Kim, Eui-Yong
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.483-489
    • /
    • 2010
  • Biodiesel has attracted great attention as an alternative renewable energy source for the replacement of petroleumbased diesel fuel, yet its high production cost due to expensive oil feedstock remainsas the major economical obstacle. In this study, we investigated catalysts and reaction conditions for the acid catalyzed pre-conversion of free fatty acid (FFA) to fatty acid methyl ester (FAME) in cheap low-grade oils of high acid value. The NaOH base catalyzed reaction of vegetable oil of the initial acid value of 2 mg KOH/g led to a high FAME conversion above 95.4%, but the conversion abruptly decreased at higher initial acid values. This base catalyzed reaction was practically ineffective displaying the FAME conversion below 15% even at the initial acid value of 10 mg KOH/g by the severe saponification side reaction. Among the various catalysts studied for the pre-conversion of FFA to FAME, Amberlyst-15 was the most effective in reducing the acid value, and the optimum reaction condition identified was $65^{\circ}C$ with oil to methanol ratio of 1:3 and catalyst concentration of 15% (w/w). As the results, great enhancements in the overall biodiesel conversion were achievable via a consecutive reaction of the acid catalyzed FFA pre-conversion to FAME under the optimal condition obtained with Amberlyst-15 followed by the NaOH base catalyzed reaction, far above the extent which was obtainable by the single NaOH catalyzed reaction.

Effects of water on the esterification of oil with high content of free fatty acids (고유리지방산 함량 오일의 바이오디젤 전환 반응에서 수분의 영향)

  • Park, Ji-Yeon;Kim, Deog-Keun;Lee, Jin-Suk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.248.1-248.1
    • /
    • 2010
  • 수송용 바이오연료로써 바이오디젤의 보급 활성화에 따른 원료인 식물성 기름의 가격 상승 및 수급 불안정성 문제를 해결하고자 그동안 활용되지 않았던 폐유지를 바이오디젤 생산 원료로 사용하여 바이오디젤 생산 단가를 낮추고 원료의 수급 안정성도 확보하려는 시도가 이루어지고 있다. 폐유지의 경우 대부분 유리지방산 함량이 높아 염기 촉매를 적용하는 방법으로는 비누의 생성으로 전환이 힘들며 산 촉매를 적용하여 유리지방산을 에스테르화하는 공정을 필요로 한다. 에스테르화 반응에서는 반응 부산물로 물이 생성되며, 생성된 물은 바이오디젤 생산 반응을 저해하고 역반응을 유도하며 촉매의 활성을 감소시킨다. 본 연구에서는 고유리지방산 함량 오일의 에스테르화 반응에서 수분의 영향을 검토하였다. 산 촉매로 액상 촉매인 황산과 고체 산 촉매인 Amberlyst-15를 사용하였다. 초기 수분 함량이 0, 1, 2, 5, 10, 20%로 증가하였을 때, 지방산 메틸 에스테르 함량이 크게 감소하였으며, 1%의 수분 함량에서도 반응이 크게 저해받는 것으로 나타났다. 따라서 고유리지방산 함량 오일의 에스테르화 반응에서 수분에 의한 저해가 중요한 변수라는 것을 알 수 있다. Amberlyst-15는 황산보다 수분의 영향에 의해 지방산 메틸 에스테르 함량이 빠르게 감소하였다. 이는 다공성의 Amberlyst-15에서 생성된 물이 반응물질들이 active site에 접근하는 것을 방해하였기 때문인 것으로 생각된다. 황산을 사용하였을 경우에는 오일 대 메탄올 몰비를 1:3에서 1:6으로 증가시킴으로써 정반응 속도가 증가하여 수분에 대한 영향이 감소하는 현상이 나타났다. 에스테르화 반응 종료 12시간 후에 바이오디젤과 메탄올 내에 수분 함량을 분석한 결과 12%의 수분이 바이오디젤 층에 존재하며 88%의 수분은 메탄올 층에 존재하였다. 반응 중에 생성된 수분을 제거하기 위해, 에스테르화 반응 30분 후에 물을 포함하는 메탄올과 촉매 층을 새 메탄올과 촉매로 교환하는 2단계 반응을 수행함으로써 지방산 메틸 에스테르 함량을 향상시킬 수 있었다. 반응 초기에는 황산이 Amberlyst-15보다 높은 활성을 보였지만, 시간이 지날수록 두 촉매 사이의 에스테르화 성능 차이는 감소하였다. 따라서 2단계 에스테르화 반응이 수분의 저해작용을 줄이는 한 가지 대안으로 제안될 수 있다. 또한 에스테르화 반응에서 물의 저해 작용을 줄이기 위해 앞으로 투과증발막의 적용 또는 물에 저해작용을 받지 않는 구조의 촉매 사용을 검토할 필요가 있다.

  • PDF

Optimization of Esterification of Jatropha Oil by Amberlyst-15 and Biodiesel Production (Amberlyst-15를 이용한 자트로파 오일의 에스테르화 반응 최적화 및 바이오디젤 생산)

  • Choi, Jong-Doo;Kim, Deog-Keun;Park, Ji-Yeon;Rhee, Young-Woo;Lee, Jin-Suk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.194-199
    • /
    • 2008
  • In this study, the effective method to esterify the free fatty acids in jatropha oil was examined. Compared to other plant oils, the acid value of jatropha oil was remarkably high, 11.5 mgKOH/g. So direct transesterification by a base catalyst was not suitable for the oil. After the free fatty acids were esterified with methanol, jatropha oil was transesterified. The activities of four solid acid catalysts were tested and Amberlyst-15 showed the best activity for the esterification. After constructing the experiment matrix based on RSM and analyzing the statistical data, the optimal esterification conditions were determined to be 6.79% of methanol and 17.14% of Amberlyst-15. After the pretreatment, jatropha biodiesel was produced by the transesterification using KOH in a pressurized batch reactor. Jatropha biodiesel produced could meet the major specifications of Korean biodiesel standards; 97.35% of FAME, 8.17 h of oxidation stability, 0.125% of total glycerol and $0^{\circ}C$ of CFPP.

A Kinetic Study on the Esterification of Oleic Acid with Methanol in the Presence of Amberlyst-15 (Amberlyst-15 촉매의 존재 하에서 올레산과 메탄올의 에스테르화 반응 속도식 연구)

  • Kim, Young-Joo;Kim, Deog-Keun;Rhee, Young Woo;Park, Soon-Chul;Lee, Jin-Suk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.621-626
    • /
    • 2005
  • The esterification reaction of free fatty acid with methanol was investigated in the presence of catalyst, Amberlyst-15, producing fatty acid methyl ester, namely, biodiesel. In this paper, the effects of the reaction parameters such as reaction temperature, mole ratio of alcohol to oleic acid and mass of catalyst on the catalytic activity have been examined. The results showed that the reaction rate increased about twice as the temperature increased every $20^{\circ}C$ in the reaction temperature range from 333 K to 373 K. The equilibrium conversion rate of oleic acid increased with the feed mole ratio of alcohol to acid ranging from 6:1 to 44:1. When the feed mole ratio was higher than 44:1, all the results were similar to that of 44:1. As for the influence of the mass of catalyst, the initial reaction rate increased from 1.2 to 1.3 times as the mass of catalyst doubles in the range of the catalyst weight from 5 to 20 wt%. The experiment data obtained were well described by the second reaction rate using a pseudo-homogeneous model.