• Title/Summary/Keyword: Ambient light sensor

Search Result 49, Processing Time 0.042 seconds

The Verification of Photoplethysmography Using Green Light that Influenced by Ambient Light (녹색광을 이용한 반사형 광용적맥파측정기의 주변광 간섭시 신호측정)

  • Chang, K.Y.;Ko, H.C.;Lee, J.J.;Yoon, Young Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.125-131
    • /
    • 2014
  • The purpose of this study is to verify the utility of reflected photoplethysmography sensor using two green light emitting diodes that influenced by ambient light. Recently it has been studied that green light emitting diode is suitable for light source of reflected photoplethysmography sensor at low temperature and high temperature. Another study showed that, green light is better for monitoring heart rate during motion than led light. However, it has a bad characteristic about ambient light noise. To verify the utility of reflected photoplethysmography sensor using green light emitting diode, this study measures the photoplethysmography signal that is distorted by ambient light and will propose a solution. This study has two parts of research method. One is measurement system that composed sensor and board. The sensor is made up PE-foam and Non-woven fabric for flexible sensor. The photoplethysmography signal is measured by measurement board that composed high-pass filter, low-pass filter and amplifier. Ambient light source is light bulb and white light emitting diode that has three steps brightness. Photoplethysmography signal is measured with lead II electrocardiography signal at the same time and it is measured at the finger and radial artery for 1 minute, 1000 Hz sampling rate. The lead II electrocardiography signal is a standard signal for heart rate and photoplethysmography signal that measured at the finger is a standard signal for waveform. The test is repeated 3 times using three sensor. The data is processed by MATLAB to verify the utility by comparing the correlation coefficient score and heart rate. The photoplethysmography sensor using two green light emitting diodes is shown better utility than using one green light emitting diode and red light emitting diode at the ambient light. The waveform and heart rate that measured by two green light emitting diodes are more identical than others. The amount of electricity used is less than red light emitting diode and error peak detectability factor is the lowest.

Monolithic Ambient-Light Sensor System on a Display Panel for Low Power Mobile Display (저 전력 휴대용 디스플레이를 위한 패널 일체형 광 센서 시스템)

  • Woo, Doo Hyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.48-55
    • /
    • 2016
  • Ambient-light sensor system, which changes the brightness of a display as ambient light change, was studied to reduce the power consumption of the mobile applications such as note PC, tablet PC and smart phone. The ambient-light sensor system should be integrated on a display panel to improve the complexity and cost of mobile applications, so the ambient-light sensor and readout circuit was integrated on a display panel using low-temperature poly-silicon thin film transistors (LTPS-TFT). We proposed the new compensation method to correct the panel-to-panel variation of the ambient-light sensors, without additional equipment. We designed and investigated the new readout circuit with the proposed compensation method and the analog-to-digital converter for the final digital output of ambient light. The readout circuit has very simple structure and control timing to be integrated with LTPS-TFT, and the input luminance ranges from 10 to 10,000 lux. The readout rate is 100 Hz, and maximum differential non-uniformity with 20 levels of the final output below 0.5 LSB.

2.2 “ QVGA LTPS LCD Panel integrated with Ambient light Sensor

  • Weng, Chien-Sen;Chao, Chih-Wei;Tseng, Hung Wei;Peng, Chia-Tien;Lin, Kun-Chih;Gan, Feng-Yuan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1319-1322
    • /
    • 2007
  • Planar PIN photodiode is compatible with LTPS process, and its fabrication requires no additional manufacturing process. In this study we design the optimum dimension of PIN diodes with two nitride layers to improve the efficiency of PIN diodes. The PIN photo sensor shows very good sensitivity to ambient light illuminance.

  • PDF

Driving Method with Variable Integration Time for Ambient Light Sensing Circuit

  • Lim, Han-Sin;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1495-1498
    • /
    • 2008
  • We proposed driving method with variable integration time for ambient light sensing. One operation period of the proposed driving method consists of several sub-integration periods with variable integration time which can enlarge dynamic range of ambient light sensing circuit. Temperature dependent characteristic of p-intrinsic-metal (p-i-m) diode can be compensated using the proposed driving method.

  • PDF

Infrared Light Absorbance: a New Method for Temperature Compensation in Nondispersive Infrared CO2 Gas Sensor

  • Yi, Seung Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.303-311
    • /
    • 2020
  • Nondispersive infrared CO2 gas sensor was developed after the simulation of optical cavity structure and assembling the optical components: IR source, concave reflectors, Fresnel lens, a hollow disk, and IR detectors. By placing a hollow disk in front of reference IR detector, the output voltages are almost constant value, near to 70.2 mV. The absorbance of IR light, Fa, shows the second order of polynomial according to ambient temperatures at 1,500 ppm. The differential output voltages and the absorbance of IR light give a higher accuracy in estimations of CO2 concentrations with less than ± 1.5 % errors. After implementing the parameters that are dependent upon the ambient temperatures in microcontroller unit (MCU), the measured CO2 concentrations show high accuracies (less than ± 1.0 %) from 281 K to 308 K and the time constant of developed sensor is about 58 sec at 301 K. Even though the estimation errors are relatively high at low concentration, the developed sensor is competitive to the commercial product with a high accuracy and the stability.

Ratiometric pH Measurements Using LysoSensor DND-192

  • Kang, Jung-Sook;Kostov, Yordan
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.384-388
    • /
    • 2002
  • A method for the ratiometric pH sensing using LysoSensor DND-192 is presented in this paper. It works in the physiological pH range. It is based on the use of two fluorophores which differ significantly in their lifetimes. As the discrimination of their emissions is performed through two different frequencies, this method can allow significant overlap of the emission spectra. A simple long-pass filter, or a combination of long-and short-pass filters, was used instead of narrow-bandpass devices. Importantly, the measurements were carried out under strong ambient light. The method could be used in a wide variety of applications, such as intracellular measurements, microscopy, bioprocess monitoring, etc.

Intelligent Lighting Control using Wireless Sensor Networks for Media Production

  • Park, Hee-Min;Burke, Jeff;Srivastava, Mani B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.5
    • /
    • pp.423-443
    • /
    • 2009
  • We present the design and implementation of a unique sensing and actuation application -- the Illuminator: a sensor network-based intelligent light control system for entertainment and media production. Unlike most sensor network applications, which focus on sensing alone, a distinctive aspect of the Illuminator is that it closes the loop from light sensing to lighting control. We describe the Illuminator's design requirements, system architecture, algorithms, implementation and experimental results. The system uses the Illumimote, a multi-modal and high fidelity light sensor module well-suited for wireless sensor networks, to satisfy the high-performance light sensing requirements of entertainment and media production applications. The Illuminator system is a toolset to characterize the illumination profile of a deployed set of fixed position lights, generate desired lighting effects for moving targets (actors, scenic elements, etc.) based on user constraints expressed in a formal language, and to assist in the set up of lights to achieve the same illumination profile in multiple venues. After characterizing deployed lights, the Illuminator computes optimal light settings at run-time to achieve a user-specified actuation profile, using an optimization framework based on a genetic algorithm. Uniquely, it can use deployed sensors to incorporate changing ambient lighting conditions and moving targets into actuation. Experimental results demonstrate that the Illuminator handles various high-level user requirements and generates an optimal light actuation profile. These results suggest that the Illuminator system supports entertainment and media production applications.

Design and Implementation of LED Dimming System with Intelligent Sensor Module

  • Cho, Young Seek;Kwon, Jaerock;Kim, Hwan-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.247-252
    • /
    • 2013
  • An intelligent light emitting diode (LED) dimming system is designed and implemented for energy-saving lighting systems. An LED light bulb is powered by an LED driver controlled by a microcontroller using pulse width modulation (PWM) signals. By changing the duty cycle of the PWM signals, the LED driver generates a driving current of up to 1,000 mA. The current consumption by the LED light bulb exhibits a very linear characteristic that indicates that the level of LED dimming can be finely tuned. Multiple sensors-lighting intensity and ultrasonic range sensors-are combined with the LED dimming system to realize an automatically controllable LED lighting system. The light intensity sensor is capable of sensing ambient light. The ultrasonic range sensor can detect objects from 0.15 to 5.6 m at a resolution of 0.0254 m. The collected information by the light intensity and ultrasonic range sensors is processed by the microcontroller that in turn automatically controls the brightness of the LED light bulb. The algorithm of the software for the LED dimming system is also described.

Analysis of Output Voltage Properties of Non-dispersive Infrared Gas Sensors According to Ambient Temperatures (주변 온도 영향에 따른 비분산 적외선 가스센서의 출력 특성 해석)

  • Park, Han-Gil;Yi, Seung-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.294-299
    • /
    • 2018
  • This article describes the output properties of non-dispersive infrared carbon dioxide($CO_2$) sensors resulting from the changes in ambient temperatures. After the developed sensor module was installed inside the gas chamber, the temperature was set to 267 K, 277 K, 300 K, and 314 K, and the concentrations of $CO_2$ gas were increased from 0 to 5,000 ppm. Then, the output voltage at each concentration was obtained. Through these experimental results, two observations were made. First, both the $CO_2$ sensor and the reference sensor showed an increase in the output voltages as the temperature rose from 0 ppm, Second, the full scale outputs of the $CO_2$ sensor grew as the temperature increased. The output characteristics were analyzed based on two factors: change in the radiant energy of the infrared light source and change in the absorptivity of $CO_2$ gas according to the ambient temperature. Additionally, temperature compensation methods were discussed.

Characteristics of a-Si:H Films for Contact-type Linear Image Sensor (밀착형 선형 영상감지소자를 위한 a-Si:H막의 특성)

  • 오상광;박욱동;김기완
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.11
    • /
    • pp.894-901
    • /
    • 1991
  • Contact-type linear image sensors have been fabricated by means of RF glow discharge decomposition method of silane and hydrogen mixtures. The dependences of the electrical and optical properties of these sensor on thickness, RF power, substrate temperature and ambient gas pressure have been investigated. the ITO/i-a-Si:H/Al structure film shows photosensitivity of 0.85 and photocurrent to dark current ratio ($I_{ph}/I_{d}$) of 150 at 5V bias voltage under 200${\mu}W/cm^[2}$ red light intensity. Under 200${\mu}W/cm^[2}$ green light intensity, the ratio is 100. In order to investigate photocarrier transport mechanism and to obtain ${\mu}{\gamma}$ product we have measured the I-V characteristics of these sensors favricated with several different deposition parameters under various light sources. The linear inage sensor for document reading has been operated under reverse bias condition with green light source, resulting in ${\mu}{\gamma}$ product of about 1.5$[\times}10^{-9}cm^{2}$/V.

  • PDF