• Title/Summary/Keyword: Andersen sampler

Search Result 36, Processing Time 0.025 seconds

Characteristic comparison of Andersen and total suspended particulate samplers in a particulate matter generation chamber (입자 발생 챔버를 이용한 Andersen과 총분진 시료채취기의 특성 비교)

  • Park, Ju-Myon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.3
    • /
    • pp.177-184
    • /
    • 2008
  • The purpose of this study was to compare the performance characteristics of Andersen and total suspended particulate (TSP) samplers in terms of particle size distribution (PSD) and mass sampling efficiency. In the present study, two Andersen and four TSP samplers were selected and tested to quantitatively estimate human exposure to fly ash representing industrial particulate matter (PM) in a carefully controlled chamber. The PSD characteristics, a mass median aerodynamic diameter and a geometric standard deviation, were found from the sampled PM of airborne samplers in the chamber. An Andersen sampler was compared with a TSP sampler quantified by a coulter counter multisizer, as a reference sampler, to describe the correlation of mass sampling efficiencies between two types of samplers. Overall results indicate that Andersen samplers overestimated small PM due to particle bounce phenomena between impaction stages. There was reasonably good correlation ($R^2$ = 0.89 and 0.91) between the mass sampling efficiencies of Andersen and TSP samplers during the two tests. However, the lower values of slope (0.71 and 0.72) in two tests showed that the Andersen sampler underestimated PM (> AD $10.1\;{\mu}m$) with sufficient inertia due to a relatively lower Andersen inlet velocity at 0.8 m/s comparing with the operating air velocity at 2.1 m/s in the sampling zone of a chamber.

Determination of Size Distribution of Atmospheric Paticulates in Urban Air Using Andersen Sampler (Andersen 시료채취기를 이용한 도시대기중 부유입자상 물질의 입도분포 측정)

  • 이용근;김만구;원정호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.93-98
    • /
    • 1985
  • Mass size distribution of atmospheric particulates were measured using an Andersen using an Andersen sampler in urban air. The atmospheric particulates were fractionated in eight stages of an Andersen sampler operating at 28.4$\ell/min$ and collected on polyester sheets. A quartz filter was placed behind the last stage collect permeated partculates. The size distribution of atmospheric particulates were divided around 1-2 $\mu$m into two groups, coarse and fine particulates regardless of sampling times. The variation of course particulates concentration was higher than fine particulates among sampling times. Different meterorological conditions and natural phenomena brought high variation of course particulates' concentration. The rain caused removal of coarse particulates seriously and the yellow and may take part in a increase of the course particulates in spring. The average concentration of atmospheric particulates to be collected by Andersen sampler was 170.8 $\mug/m^3$ during 3 times of sampling. Among them the average concentration of atmospheric particulates which could penetrated under a bronchi and alveoli were 70.4$\mug/m^3$ and 36.6$\mug/m^3$ respectively.

  • PDF

Seasonal variation in size distributions for ionic components in the atmospheric aerosol (대기중 입자상물질에 있어서 이온성분의 입도별 계절변동)

  • 김희강;조기철;이주희;최민규;마창진;강충민;여현구
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.55-61
    • /
    • 1996
  • Measurements of the seasonal variations of concentration and size distribution of TSP, $SO_4^{2-}, NO_3^-, Cl^-, NH_4^+, Na^+, K^+, Ca^{2+}$ and $Mg^{2+}$ were made by Andersen air sampler from May 1995 to April 1996 in Seoul. The size distribution of these ions was divided into four patterns. 1) Distribution was concentrated on fine particles over a year such as $NO_3^-$ component, 2) Distribution was predominated in coarse particles fraction over a year such as $Mg^{2+}$ and $Ca^{2+}$ components, 3) Distribution was differerent from various seasons such as $NH_4^+, SO_4^{2-}, Cl^-$ and $K^+$ components, 4) Distribution was bi-modal such as $Na^+$.

  • PDF

A Study on the Air Pollution Component in Hwasoon Nulitjae Tunnel (화순너릿재 터널내의 대기오염성분에 관한 조사연구)

  • 신대윤;송금섭;김정규;송연호;임만택
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.3
    • /
    • pp.52-57
    • /
    • 1993
  • This study was carried out to investigate the air pollution in Hwasoon Nulitjae tunnel for two months, from August 1992 to September 1992. The total suspended particles were collected by high volume air sampler at inside and outside of Hwasoon Nulitjae tunnel, of which major water soluble component and heavy metalic element were analyzed. Size distribution and respirable mass fraction of aerosol at inside were measured by filters on nine stages Andersen air sampler. The average concentration of TSP at inside was 657.57 $\mu$g/m$^3$, which appeared about 9.2 times as high as that of 71.47 $\mu$g/m$^3$ at outside. The decrease effect caused by using new tunnel was 31.2%. As a result of correlation analysis between concentration of TSP at inside of Hwasoon Nulitjae tunnel and that at outside, correlation coefficient was 0.713. The average concentrations of SO$_4^{2-}$ , NO$_3^-$, CI$^-$ were 43.02 $\mu$g/m$^3$, 19.86 $\mu$g/m$^3$, 4.96 $\mu$g/m$^3$, those of NH$_4^+$, Na$^+$, K$^+$ 1.42 $\mu$g/m$^3$, 4.45 $\mu$g/m$^3$, 2.89 $\mu$g/m$^3$ and those of Ca$^{2+}$, Mg$^{2+}$, Pb$^{2+}$ 3.92 $\mu$g/m$^3$, 2.27 $\mu$g/m$^3$. 1.52 $\mu$g/m$^3$, respectively. It was estimated that mass fraction rate of respirable particle at inside was about 84.54% of aerosol. The average concentration of suspended particle to be collected by Andersen sampler was 478.90 $\mu$g/m$^3$, this was about 72.8% of that by high volume air sampler.

  • PDF

A Suggested Air Sampling Strategy for Bioaerosols in Daycare Center Settings (어린이활동공간에서의 바이오에어로졸 포집 전략)

  • Jo, JungHeum;Park, Jun-sik;Kim, Sung-Yeon;Kwon, Myung hee;Kim, Ki Youn;Choi, Jeong-Hak;Seo, SungChul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.3
    • /
    • pp.324-333
    • /
    • 2016
  • Objectives: We aimed to compare the sampling performance of different flow-based impactor samplers for collecting fungal spores and bacteria and to explore the association of the level of bioaerosols with activity patterns of occupants in daycare center settings. Methods: For comparison of sampling performance, two different flow-based samplers (greater than 100 L/min or not) were selected; a low flow-based sampler (one-stage Andersen sampler) and two high flow-based samplers (DUO SAS SUPER 360 sampler, BUCK bio-culture sampler). We collected airborne mold and bacteria in 30 daycare centers with various levels of contaminated air. Three repeat samplings per each sampler were performed. Mold and bacteria were grown for 96 hours at $25{\pm}1^{\circ}C$ and 48 hours at $35{\pm}1^{\circ}C$, respectively. The Andersen and SAS samplers were used for investigating the association between the level of bioaerosols and the activity patterns of occupants in daycares. Particular matters 10($PM_{10}$), temperature, and relative humidity were monitored as well. Samplings were carried out with one-hour interval from 9 to 5 O'clock. For statistical comparisons, Kruskal-Wallis test, Wilcoxon's signed rank test, and multiple regression analysis were carried out. Results: The airborne level of molds by the low flow-based sampler were significantly higher than that of high flow-based samplers (indoor, P=0.037; outdoor, P=0.041). However, no statistical difference was observed in the airborne level of bacteria by each sampler. Also the level of bioaerosols varied by the time, particularly with different activity patterns in daycare centers. The higher level of mold and bacteria were observed in play time in indoor. Similarly, the concentrations of $PM_{10}$ were significantly associated with the level of bioaerosols (P<0.05). Conclusions: Our findings indicate that the flow rate of sampler, rather than total air volume, could be able to affect the results of sampling. Also, the level of airborne mold and bacteria vary behavior patterns of occupants in indoor of daycare settings. Therefore, different samplers with other flow rate may be selected for mold or bacteria sampling, and activity patterns should be considered for bioaerosol sampling as well.

A Study on Equilibrium of $NH_4NO_{3(s)} -HNO_{3(g)} -NH_{3(g)}$ in Urban Atmosphere (도시 대기중에서 $NH_4NO_{3(s)} -HNO_{3(g)} -NH_{3(g)}$의 평형에 관한 연구)

  • 천만영;강병욱;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.198-203
    • /
    • 1992
  • Theoretical predictions of the atmospheric equilibrium involving $HNO_3, NH_3 and NH_4NO_3$ were compared with atmospheric measurements of particulate nitrate$(NO_3^-)$, $HNO_3$ and $NH_3$ concentration by triple filter pack sampler and Andersen air sampler in Seoul from 8th to 11th Oct 1991. The measured $HNO_3-NH_3$ concentration product K was higher than equilibrium costant Kc calculated from thermodynamic data of $HN_4NO_{3(s)} -HNO_{3(g)} -NH_{3(g)}$. The cause of K is greater than Kc was the result of air pollution, partcicularly anthropogenic $NH_3$.

  • PDF

A Study of Size Distribution of Sulfate and Nitrate in Urban Air (都市大氣中 黃酸鹽과 窒酸鹽 關한 硏究)

  • 신상은;김승학;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.33-39
    • /
    • 1986
  • Particulate matter was collected by Andersen Air Sampler in the Seoul area during February-October, 1985, in order to investigate size distribution of sulfate and nitrate in aerosol, and conversion of sulfur dioxide to sulfate and that of nitrogen dioxide to nitrate. The size distribution of sulfate and nitrate had fine mode. The ratio of fine sulfate to total sulfate in aerosol and that of fine nitrate to total nitrate showed between 54.6% and 86%, and 55.7% and 95%, respectively, which presumably originated from gaseous reaction of sulfur dioxide and nitrogen dioxide in the atmosphere.

  • PDF

Study on sampling methods for mold from indoor air in domestic environment (국내 환경에서 실내 부유진균 포집 방법 연구)

  • Ahn, Geum Ran;Kim, Bo Young;Kim, Ji Eun;Son, Bu Sun;Park, Moo-Kyun;Kim, Sung-Yeon;Kwon, Myung-Hee;Kim, Seong Hwan
    • Journal of odor and indoor environment
    • /
    • v.16 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • Mold is one of the important bio-aerosols affecting human health in the indoor environment. To manage mold contamination, it is necessary to use an appropriate method for its detection and enumeration. Recently, the impaction method of ISO 16000-18 has been established as one of methods to detect and enumerate molds in air. To investigate the general use of the impaction method for mold detection in domestic indoor environments, the suitability of the method was assessed using different antibiotics, media and air samplers. All of the three antibiotics tested - ampicillin, chloramphenicol and streptomycin - showed inhibitory effects on bacterial colony formation on MEA and DG-18 media, without inhibiting mold growth. Of these three antibiotics, ampicillin was the most effective. There was no statistical difference between MEA and DG-18 media in the measurement of mold concentration. The formation of discriminative colony morphology was more apparent in DG-18 media. No significant difference in the measurement of mold concentration was found between Andersen samplers and MAS-100NT samplers, which are two major samplers introduced in Korea.

Characterization of PM10 and PM2.5 Mass Concentrations in Jinju (진주시 대기중 PM10 및 PM2.5의 질량농도 특성)

  • Park, Jeong-Ho;Park, Gee-Hyeong;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.1963-1970
    • /
    • 2014
  • Ambient particulate matters($PM_{10}$ and $PM_{2.5}$) were investigated at GNTECH university in Jinju city. Samples were collected using a dichotomous sampler(series 240, Andersen Corp.) and a TEOM(Tapered Element Oscillating Microbalance) monitor period from November 2012 to October 2013. For the dichotomous sampler measurements, daily 24-h integrated $PM_{2.5}$ and $PM_{10-2.5}$ ambient air samples were collected at a total flow rate of 16.7 L /min. For the TEOM monitor measurements, daily 1-h integrated $PM_{10}$ ambient air samples were collected at a flow rate of 16.7 L /min. The annual average concentrations of $PM_{10-2.5}$ and $PM_{2.5}$ by a dichotomous sampler were $10.0{\pm}6.1{\mu}g/m^3$ and $22.6{\pm}9.3{\mu}g/m^3$, respectively. And $PM_{10}$ concentration by dichotomous sampler were similar to TEOM monitor by $32.7{\pm}12.9{\mu}g/m^3$ and $31.7{\pm}11.3{\mu}g/m^3$, respectively. And good correlation ($R^2=0.964$) between the two methods was observed. The annual average of $PM_{2.5}/PM_{10}$ ratio was $0.70{\pm}0.12$.

Trace Metals Characterization of Respirable Dust during Yellow Sand Phenomena in Seoul Area (서울지역의 황사발생시 호흡성 분진 중 미량원소의 특성 평가)

  • 신은상;선우영
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.41-51
    • /
    • 2002
  • This research was carried out using Anderson air sampler which were set up on the roof of the Engineering College of Konkuk University at Hwayang-Dong, Kwangjin-Gu, Seoul from Aug. 1992 to foul. 1999. The results are as follows: The major component of yellow sand is soil particles based upon the observation that particles ranging from $3.3~7.0{\mu}m$ occupy 36~63%. It is certain that the increase of fine particles of respirable dust during yellow sand phenomenon in Seoul area affects the human body. The trace metals from natural sources like Al, Ca, Fe, K, Na, and Si show larger mass median diameter(MMD) values during yellow sand phenomenon than in normal situations while the values of MMD for Mn and Pb rarely changes. Noticeably, the changes in value of MMD of water soluble elements like ${NO_3}^{-}$ and ${SO_4}^{2}$ are 2.3 and 6.6 times higher during the yellow sand phenomenon compared to normal situations, respectively. This fact is regarded as decisive evidence showing that ${NO_3}^{-}$ and ${SO_4}^{2}$ in the air are attached to yellow sand and move together.