• Title/Summary/Keyword: Androgen Receptor

Search Result 124, Processing Time 0.027 seconds

Proteomic analysis of androgen-independent growth in low and high passage human LNCaP prostatic adenocarcinoma cells

  • Youm, Yun-Hee;Kim, Se-Yoon;Bahk, Young-Yil;Yoo, Tag-Keun
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.722-727
    • /
    • 2008
  • The present study compared the proteomic characteristics of a low passage number (L-33) and high passage number (H-81) LNCaP cell clone. Marked differences in protein expression were noted in the response of L-33 and H-81 cells to androgens. To investigate if regulation of these proteins was androgen-dependent, expression of the androgen receptor was silenced via small interfering RNA. Consistent with the proteomic data, abrogation of androgen receptor production in H-81 cells resulted in the reversed expression level into L-33 cells compared with non-treated H-81 LNCaP cells. The results clarify the progression into an androgen-independent phenotype.

Pharmacological Comparison of Timosaponin A III on the 5-beta Reductase and Androgen Receptor via In Silico Molecular Docking Approach (In silico 약리학적 분석을 통한 티모사포닌 A III의 5-베타 리덕타아제 단백질 및 안드로겐 수용체 단백질 활성 부위에 대한 결합 친화도 비교 연구)

  • Kim, Dong-Chan
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.307-313
    • /
    • 2018
  • Alopecia cause psychological stress due to their effect on appearance. Thus, the global market size of the alopecia treatment products are growing quickly. Timosaponin A III is the well known active ingredient of Anemarrhenae Rhizoma. In this study, we investigated and compared the binding affinity of timosaponin A III with finasteride (5-beta reductase antagonist) and minoxidil (androgen receptor antagonist) on the target protein active site by in silico computational docking studies. The three dimensional crystallographic structure of 5-beta reductase (PDB ID : 3G1R) and androgen receptor (PDB ID: 4K7A) was obtained from PDB database. In silico computational autodocking analysis was performed using PyRx, Autodock Vina, Discovery Studio Version 4.5, and NX-QuickPharm option based on scoring functions. The timosaponin A III showed optimum binding affinity (docking energy) with 5-beta reductase as -12.20 kcal/mol as compared to the finasteride (-11.70 kcal/mol) and with androgen receptor as -9.00 kcal/mol as compared to the minoxidil (-7.40 kcal/mol). The centroid X, Y, Z grid position of the timosaponin A III on the 5-beta reductase was similar (overlap) to the finasteride, but the X, Y, Z centroid grid of the timosaponin A III on the androgen receptor was significantly far from the minoxidil centroid position. These results significantly indicated that timosaponin A III could be more potent antagonist to the 5-beta reductase and androgen receptor. Therefore, the extract of Anemarrhenae Rhizoma or timosaponin A III containing biomaterials can substitute the finasteride and minoxidil and can be applied to the alopecia protecting product and related industrial fields.

Testicular Expression of Steroidogenic Enzyme Genes Is Related to a Transient Increase in Serum 19-nortestosterone during Neonatal Development in Pigs

  • Choi, Nag-Jin;Hyun, Jin Hee;Choi, Jae Min;Lee, Eun Ju;Cho, Kyung Hyun;Kim, Yunje;Chang, Jongsoo;Chung, Il Byung;Chung, Chung Soo;Choi, Inho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.12
    • /
    • pp.1832-1842
    • /
    • 2007
  • Cytochrome P450 aromatase is responsible for the biosynthesis of estrogen. It is also responsible for the endogenous production of 19-nortestosterone (nandrolone), an anabolic androgen unique to pigs. Plasma concentrations of 19-nortestosterone are highest between two and four weeks after birth in male pigs. In the present study, the physiology of 19-nortestosterone was investigated by measuring the mRNA levels of steroidogenic enzymes, estrogen receptors and androgen receptor in the tissues of growing pigs. The expression of aromatase, 17${\alpha}$-hydroxylase and 3${\beta}$-hydroxysteroid dehydrogenase in the testes of male piglets increased between birth and two weeks of age, and then decreased progressively. Similar developmental expressional patterns were observed for 17${\alpha}$-hydroxylase and 3${\beta}$-hydroxysteroid dehydrogenase in the ovaries of female piglets, but without significant aromatase expression. The major form of aromatase expressed in the testes of piglets was identified as type I. Expression of estrogen receptor-${\alpha}$ and -${\beta}$and androgen receptor genes was also detected in both testes and ovaries. A transient elevation of androgen receptor mRNA in male piglets at two weeks of age was also observed in testes. Significant expression of the androgen receptor gene, but not of estrogen receptor-${\alpha}$ and -${\beta}$ genes, was also demonstrated in adipose tissue and muscle. We conclude that the observed increase in the testicular expression of aromatase in male pigs could account for the production of large amounts of 19-nortestosterone at between two and four weeks of age in males. Androgen receptor and 19-nortestosterone appeared to be important for testicular development and might contribute to sexual dimorphism in body composition and muscle development in juvenile pigs.

Estrogen, Androgen, and Retinoic Acid Hormone Activity of Ginseng Total Saponin (인삼 총 사포닌의 에스트로젠, 안드로젠, 레티노익산 호르몬 수용체에 대한 활성)

  • Ji, Sang-Mi;Lee, Young-Joo
    • Journal of Ginseng Research
    • /
    • v.27 no.3
    • /
    • pp.93-97
    • /
    • 2003
  • Alternative or complementary medicine plays an important role in health care system. Ginseng, being one of the most popular oriental herbs, is believed to contain various steroid hormone activity. Ginseng has been demonstrated pharmacological effect in the cardiovascular, endocrine, central nervous, and immune system. Our objective was to study that total saponin might mediate some of their actions by binding to the steroid hormone receptor, as they share many of the actions of steroid hormone in various physiological system. Using total saponin from Panax Ginseng, we have studied the possibility of total saponin being a potential estrogen receptor, androgen receptor, and retinoic acid receptor ligand. Total saponin activated the transcription of both the estrogen and androgen responsive luciferase reporter plasmids at a concentration of 100$\mu\textrm{g}$/ml in COS cells transiently transfected with the corresponding receptor and hormone responsive receptor plasmids. And total saponin caused a concentration-dependent stimulation of estrogen receptor. Total saponin increased the expression of estrogen responsive c-fos proto-oncogene at the protein level in MCF7 cells at 24 h treatment as examined by Western analysis. The c-fos induction was used as a specific marker of estrogen responsiveness. This activation was inhibited by the specific estrogen receptor antagonist, ICI 182,780. However, total saponin failed to activate the retinoic acid receptor in COS cells transiently transfected with the corresponding receptor and retinoic acid responsive reporter plasmids. These results show that total saponin is capable of activating estrogen and androgen receptors.

Identification of Ran-binding protein M as a stanniocalcin 2 interacting protein and implications for androgen receptor activity

  • Shin, Jihye;Sohn, Young Chang
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.643-648
    • /
    • 2014
  • Stanniocalcin (STC), a glycoprotein hormone originally discovered in fish, has been implicated in calcium and phosphate homeostasis. While fishes and mammals possess two STC homologs (STC1 and STC2), the physiological roles of STC2 are largely unknown compared with those of STC1. In this study, we identified Ran-binding protein M (RanBPM) as a novel binding partner of STC2 using yeast two-hybrid screening. The interaction between STC2 and RanBPM was confirmed in mammalian cells by immunoprecipitation. STC2 enhanced the RanBPM-mediated transactivation of liganded androgen receptor (AR), but not thyroid receptor ${\beta}$, glucocorticoid receptor, or estrogen receptor ${\beta}$. We also found that AR interacted with RanBPM in both the absence and presence of testosterone (T). Furthermore, we discovered that STC2 recruits RanBPM/AR complex in T-dependent manner. Taken together, our findings suggest that STC2 is a novel RanBPM-interacting protein that promotes AR transactivation.

Expression of the Receptor Genes of FSH, Estrogen- $\alpha$, $\beta$, Androgen, IGFI and TGF-$\beta$ during Fetal and Prepubertal Testicular Development in Mouse

  • Kim, Chul;Park, J.H.;Kim, S.J.;Seo, Y.J.;Do, B.R.;Roh, S.I.;Yoon, H.S.;Kim, E.S.
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2001.02a
    • /
    • pp.50-51
    • /
    • 2001
  • In ultrastructure study of testis, Sertoli cells start to differentiate at 16 days of gestation. Transcripts of FSH receptor, IGF-I receptor, ER $\alphareceptor, $ $TGF-\beta$ receptor and androgen receptor were highly and initially expressed at 16 day of gestation. As results of in situ PCR at 16 day of gestation, transcripts of FSH, IGF-I receptor were detected in Sertoli cells and spermatogonia, whereas the receptors of $ER\alpha, $ $TGF-\beta$ and androgen were detected in Sertoli cells. Therefore, expression of FSH and estrogen $\alpha, $ androgen, IGF-I and $TGF-\alpha$ could play an important role during fetal and prepubertal testicular development by stage specific manner in mouse.

Androgen in the Uterus: A Compensator of Estrogen and Progesterone

  • Cheon, Yong-Pil;Lee, Dong-Mok;Chun, Tea-Hoon;Lee, Ki-Ho;Choi, In-Ho
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.133-143
    • /
    • 2009
  • Pivotal roles of steroid hormones in uterine endometrial function are well established from the mouse models carrying the null mutation of their receptors. Literally androgen belongs to male but interestingly it also detected in female. The fluctuations of androgen levels are observed during reproductive cycle and pregnancy, and the functional androgen receptor is expressed in reproductive organs including uterus. Using high throughput methodology, the downstream genes of androgen have been isolated and revealed correlations between other steroid hormones. In androgen-deficient mice, uterine responses to exogenous gonadotropins are impaired and the number of pups per litter is reduced dramatically. As expected androgen has important role in decidual differentiation through AR. It regulates specific gene network during those cellular responses. Recently we examined the effects of steroid hormonal complex containing high level of androgen. Interestingly, on the contrary to the androgen-alone administration, the hormonal complex did not disturb the decidual reaction and the pubs did not show any morphological abnormality. It is suspected that the complexity of communication between other steroid hormone and their receptors are the reasons. In summary, androgen exists in female blood and it suggests the importance of androgen in female reproduction. However, the complex interactions with other hormones are not fully understood compared with estrogen and progesterone. The further studies to evaluate the possible role of androgen are needed and important to provide the in vivo rational for the prevention of associated pregnancy complications and help human's health.

  • PDF

Effects of ginseng on two main sex steroid hormone receptors: estrogen and androgen receptors

  • Park, Joonwoo;Song, Heewon;Kim, Si-Kwan;Lee, Myeong Soo;Rhee, Dong-Kwon;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.215-221
    • /
    • 2017
  • Ginseng has been used in China for at least two millennia and is now popular in over 35 countries. It is one of the world's popular herbs for complementary and alternative medicine and has been shown to have helpful effects on cognition and blood circulation, as well as anti-aging, anti-cancer, and anti-diabetic effects, among many others. The pharmacological activities of ginseng are dependent mainly on ginsenosides. Ginsenosides have a cholesterol-like four trans-ring steroid skeleton with a variety of sugar moieties. Nuclear receptors are one of the most important molecular targets of ginseng, and reports have shown that members of the nuclear receptor superfamily are regulated by a variety of ginsenosides. Here, we review the published literature on the effects of ginseng and its constituents on two main sex steroid hormone receptors: estrogen and androgen receptors. Furthermore, we discuss applications for sex steroid hormone receptor modulation and their therapeutic efficacy.

Benzyldihydroxyoctenone, a Novel Nonsteroidal Antiandrogen, Shows Differential Apoptotic Induction in Prostate Cancer Cells in Response to Their Androgen Responsiveness

  • Suh, Hye-Won;Oh, Ha-Lim;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.540-544
    • /
    • 2011
  • The molecular mechanisms of apoptotic induction by benzyldihydroxyoctenone (BDH), a nonsteroidal antiandrogen, isolated from the culture broth of Streptomyces sp., have been previously published in prostate cancer LNCaP cells. Apoptotic induction of BDH-treated LNCaP cells was associated with downregulation of Bcl-xL that caused, in turn, cytochrome c release from mitochondria, and activation of procaspases and specific proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). The purpose of the present study was to investigate the patterns of apoptotic induction by BDH in non-prostate, ovarian cancer PA-1 (androgen-independent and -insensitive) cells and prostate cancer cells with different androgen responsiveness, such as C4-2 (androgen-independent and -sensitive), 22Rv1 (androgen-dependent and -low sensitive), and LNCaP (androgen-dependent and -high sensitive) cells. We found that BDH-treated LNCaP cell proliferation was significantly inhibited in a time-dependent manner and induced apoptosis via downregulation of the androgen receptor (AR) and prostate-specific antigen (PSA), as well as antiapoptotic Bcl-xL protein. However, the levels of BDH-mediated apoptotic induction and growth inhibition in 22Rv1 cells were apparently lower than those of LNCaP cells. In contrast, the induction of apoptosis and antiproliferative effect in BDH-treated non-prostate cancer PA-1 and hormone refractory C4-2 cells were not detectable and marginal, respectively. Therefore, BDH-mediated differential apoptotic induction and growth inhibition in a cell type seem to be obviously dependent on its androgen responsiveness; primarily on androgen-dependency, and then on androgensensitivity.

Potent HAT Inhibitory Effect of Aqueous Extract from Bellflower (Platycodon grandiflorum) Roots on Androgen Receptor-mediated Transcriptional Regulation

  • Lee, Yoo-Hyun;Kim, Yong-Jun;Kim, Ha-Il;Cho, Hong-Yon;Yoon, Ho-Geun
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.457-462
    • /
    • 2007
  • Histone acetyltransferase (HAT) is a family of enzymes that regulate histone acetylation. Dysfunction of HAT plays a critical role in the development of cancer. Here we have screened the various plant extracts to find out the potent HAT inhibitors. The bellflower (Platycodon grandiflorum) root have exhibited approximately 30% of the inhibitory effects on HAT activity, especially p300 and CBP (CREB-binding protein) at the concentration of $100\;{\mu}g/mL$. The cell viability was decreased approximately 52% in LNCaP cell for 48 hr incubation. Furthermore, mRNA level of 3 androgen receptor target genes, PSA, NKX3.1, and TSC22 were decreased with bellflower root extract treatment ($100\;{\mu}g/mL$) in the presence of androgen. In ChIP assay, the acetylation of histone H3 and H4 in PSA promoter region was dramatically repressed by bellflower root treatment, but not TR target gene, Dl. Therefore, the potent HAT inhibitory effect of bellflower root led to the decreased transcription of AR target genes and prostate cancer cell growth with the repression of histone hyperacetylation.