• Title/Summary/Keyword: Anion exchange membrane

Search Result 196, Processing Time 0.019 seconds

Role of Graphene Derivatives in Anion Exchange Membrane for Fuel Cell: Recent Trends (연료전지용 음이온교환막에서 그래핀 유도체의 역할: 최근 동향)

  • Manoj, Karakoti;Sang Yong, Nam
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.411-426
    • /
    • 2022
  • Energy plays a significant role in modern lifestyle because of our extensive reliance over energy-operating devices. Therefore, there is a need for alternative and green energy resources that can fulfill the energy demand. For this, fuel cell (FCs) especially anion exchange membrane fuel cells (AEMFCs) have gained tremendous attention over the other (FCs) due to their fast reaction kinetics without using noble catalyst and allow to use of cheaper polymers with high performance. But lack of highly conductive, chemically, and mechanically stable anion exchange membrane (AEM) still main obstacle to the development of high performance AEMFCs. Therefore, graphene-based polymer composite membranes came into the existence as AEMs for the FCs. The exceptional properties of the graphene help to improve the performance of AEMs. Still, there are lot of challenges in the graphene derivatives based AEMs because of their high tendency of agglomeration in polymer matrix which reduced their potential. To overcome this issue surface modification of graphene derivatives is necessary to restrict their agglomeration and conserved their potential features that can help to improve the performance of AEM. Therefore, this review focus on the surface modification of graphene derivatives and their role in the fabrication of AEMs for the FCs.

Reinforced Anion-exchange Membranes Employing Porous PTFE Support for All-vanadium Redox Flow Battery Application (전 바나듐 레독스 흐름전지 응용을 위한 다공성 PTFE 지지체를 사용한 강화 음이온교환막)

  • Moon, Ha-Nuel;Song, Hyeon-Bee;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.351-362
    • /
    • 2021
  • All-vanadium redox flow battery (VRFB) is one of the promising high-capacity energy storage technologies. The ion-exchange membrane (IEM) is a key component influencing the charge-discharge performance and durability of VRFB. In this study, a pore-filled anion-exchange membrane (PFAEM) was fabricated by filling the pores of porous polytetrafluoroethylene (PTFE) support with excellent physical and chemical stability to compensate for the shortcomings of the existing hydrocarbon-based IEMs. The use of a thin porous PTFE support significantly lowered the electrical resistance, and the use of the PTFE support and the introduction of a fluorine moiety into the filling ionomer significantly improved the oxidation stability of the membrane. As a result of the evaluation of the charge-discharge performance, the higher the current efficiency was seen by increasing the fluorine content in the PFAEM, and the superior voltage and energy efficiencies were shown owing to the lower electrical resistance compared to the commercial membrane. In addition, it was confirmed that the use of a hydrophobic PTFE support is more preferable in terms of oxidation stability and charge-discharge performance.

Modeling the electric transport of HCl and H3PO4 mixture through anion-exchange membranes

  • Koter, Stanislaw;Kultys, Monika;Gilewicz-Lukasik, Barbara
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.187-205
    • /
    • 2011
  • The electric transport of the mixture of hydrochloric and phosphoric acids through strong base (Neosepta ACM) and weak base (Selemion AAV) anion-exchange membranes was investigated. The instantaneous efficiency of HCl removal from the cathode solution, $CE_{Cl}$, with and without $H_3PO_4$ was determined. It was found that $CE_{Cl}$ was 0.8-0.9 if the number of moles of elementary charge passed through the system, $n_F$, did not exceed ca. 80% of the initial number of HCl moles in the cathode solution, $n_{Cl,ca,0}$. The retention efficiency of $H_3PO_4$ in that range was close to one. The transport of acid mixtures was satisfactorily described by a model based on the extended Nernst-Planck and Donnan equations for $n_F$ not exceeding $n_{Cl,ca,0}$. Among the tested model parameters, most important were: concentration of fixed charges, the porosity-tortuosity coefficient, and the partition coefficient of an undissociated form of $H_3PO_4$. For the both membranes, the obtained optimal values of fixed charge concentration, $\bar{c}_m$, were up to 40% lower than the literature values of $\bar{c}_m$ obtained from the equilibrium measurements. Regarding the $H_3PO_4$ equilibria, it was sufficient to consider $H_3PO_4$ as a monoprotic acid.

Preparation of Polyacrylate-Based Non-Reinforced Anion Exchange Membranes via Photo-Crosslinking for Reverse Electrodialysis (역전기투석용 광가교형 폴리아크릴레이트계 음이온교환막 제조)

  • Tae Hoon Kim;Seok Hwan Yang;Jang Yong Lee
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.70-78
    • /
    • 2024
  • A photo-crosslinked anion exchange membrane (AEM) based on quaternary-aminated polyacrylates was developed for reverse electrodialysis (RED). Although reverse electrodialysis is a clean and renewable energy generation system, the low power output and high membrane cost are serious obstacles to its commercialization. Cross-linked AEMs without any polymer supporters were fabricated through photo-crosslinking between polymer-typed acrylates with anion conducting groups, in particular, polymer-typed acrylates were synthesized based on engineering plastic with outstanding mechanical and chemical property. The fabricated membranes showed outstanding physical, chemical, and electrochemical properties. The area resistance of the fabricated membranes (CQAPPOA-20, CQAPPOA-35, and CQAPPOA-50) were ~50% lower than that of AMV (2.6 Ω cm2). Moreover, the transport number of CQAPPOA-35 wase comparable to that of AMV, despite the thin thickness (40 ㎛) of the fabricated membranes. The RED stack with the CQAPPOA-35 membrane provided an excellent maximum power density of 2.327 W m-2 at a flow rate of 100 mL min-1, which is 15% higher than that (2.026 W m-2) of the RED stack with the AMV membrane. Considering easy fabrication process by UV photo-crosslinking and outstanding RED stack properties, the CQAPPOA-35 membrane is a promising candidate for REDs.

Research Trends in Bipolar Membrane for Water Dissociation Catalysts and Energy Technology Applications (바이폴라막의 물 분해 촉매 및 에너지 기술 응용의 연구 동향)

  • Do-Hyeong Kim;Sang Yong Nam
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.10-19
    • /
    • 2024
  • The bipolar membrane is an ion exchange membrane consisting of a cation exchange layer, an anion exchange layer, and an interface layer, and is a membrane that generates protons and hydroxide ions based on water dissociation characteristics. Using these properties, research is being conducted in various application fields such as the chemical industry, food processing, environmental protection, and energy conversion and storage. This paper investigated the concept of bipolar membrane, water dissociation mechanism, and water dissociation catalyst to provide a comprehensive understanding of bipolar membrane technology, were investigated. Lastly, we also investigated the bipolar membrane process that has been recently applied to energy technology.

A Study on the Effect of Different Functional Groups in Anion Exchange Membranes for Vanadium Redox Flow Batteries (바나듐 산화환원 흐름전지를 위한 음이온교환막의 관능기에 따른 특성 연구)

  • Lee, Jae-Myeong;Lee, Mi-Soon;Nahm, Ki-Seok;Jeon, Jae-Deok;Yoon, Young-Gi;Choi, Young-Woo
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.415-424
    • /
    • 2017
  • Commonly cation exchange membranes have been used for vanadium redox flow batteries. However, a severe vanadium ion cross-over causes low energy efficiency. Thus in this study, we prepared 3 different anion exchange membranes to investigate the effect on the membrane properties such as vanadium ion cross-over and long term stability. The base membranes were prepared by an electrolyte pore filling technique using vinyl benzyl chloride (VBC), divinylbenzene (DVB) within a porous polyethylene (PE) substrate. Then 3 different functional amines were introduced into the base membranes, respectively. These resulting membranes were evaluated by physico-chemical properties such as ion exchange capacity, dimensional stability, vanadium ion cross-over and membrane area resistance. Conclusively, TEA-functionalized membrane showed longest term stability than other membranes although all the membranes are similar to coulombic efficiency.

Electroconvective vortex on an Ion Exchange Membrane under Shear Flow (전단흐름 하에 이온교환막 위에서 발생하는 전기수력학적 와류)

  • Kwak, Rhokyun
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.61-69
    • /
    • 2018
  • Ion exchange membrane can transfer only cation or anion in electrically conductive fluids. Recent studies have revealed that such selective ion transport can initiate electroconvective instability, resulting vortical fluid motions on the membrane. This so-called electroconvective vortex (a.k.a. electroconvection (EC)) has been in the spotlight for enhancing an ion flux in electrochemical systems. However, EC under shear flow has not been investigated yet, although most related systems operate under pressure-driven flows. In this study, we present the direct visualization platform of EC under shear flow. On the transparent silicone rubber, microscale channels were fabricated between ion exchange membranes, while allowing microscopic visualization of fluid flow and ion concentration changes on the membranes. By using this platform, not only we visualize the existence of EC under shear flow, its unique characteristics are also identified: i) unidirectional vortex pattern, ii) its advection along the shear flow, and iii) shear-sheltering of EC vortices.

Counter anion effects in anion exchange membrane-fabricated non-aqueous vanadium redox flow battery

  • Son, Pyeong Soo;Oh, Min-Seok;Ye, Jun-Hee;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.341-346
    • /
    • 2015
  • In order to understand the counter anionic effects in a non-aqueous vanadium redox flow battery (VRFB), we synthesized four types of electrolyte salts (1-ethyltriethamine tertafluoroborate, [E-TEDA]+[BF4], 1-ethyltriethamine hexafluorophosphate, [E-TEDA]+[PF6], 1-butyltriethylamine tertafluoroborate, [B-TEDA]+[BF4], and 1-buthyltriethamine hexafluorophosphate [B-TEDA]+[PF6]) by counter anion exchange reaction after the SN2 reaction. We confirmed the successful synthesis of the electrolyte salts [E-TEDA]+[Br] and [B-TEDA]+[Br] via 1H-NMR spectroscopy and GC-mass analysis before the counter anion exchange reaction. The electric potential of the vanadium acetylacetonate, V(acac)3, as an energy storage chemical was shown to be 2.2 V in the acetonitrile solvent with each of the [E-TEDA]+[BF4], [E-TEDA]+[PF6], [B-TEDA]+[BF4], and [B-TEDA]+[PF6] electrolyte salts. In a non-aqueous VRFB with a commercial Neosepta AFN membrane, the maximum voltages reached 1.0 V and 1.5 V under a fixed current value of 0.1 mA in acetonitrile with the [E-TEDA]+[BF4] and [E-TEDA]+[PF6] electrolyte salts, respectively. The maximum voltage was 0.8 V and 1.1 V under a fixed current value of 0.1 mA in acetonitrile with the [B-TEDA]+[BF4] and [B-TEDA]+[PF6] electrolyte salts, respectively. From these results, we concluded that in the non-aqueous VRFB more of the [PF6] counter anion than the [BF4] counter anion was transported onto the commercial Neosepta AFN anion exchange membrane.

Synthesis and Characterization of IPA-co-HDO-co-(TPA/MA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery (전바나듐계 레독스-흐름 전지용 IPA-co-HDO-co-(TPA/MA) 음이온교환막의 합성 및 특성)

  • Jung, Jae-Chul;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.593-598
    • /
    • 2011
  • The IPA-co-HDO-co-(TPA/MA) copolymers for all-vanadium redox flow battery were synthesized by melt condensation polymerization using isophthalic acid(IPA), 1,6-hexandiol (HDO), terephthalic acid(TPA) and maleic anhydride(MA). The amination of chloromethylated IPA-co- HDO-co-(TPA/MA)(CIHTM) copolymer was carried out using trimethylamine, and the anion exchange membrane was also prepared by UV crosslinking reaction. The structure and thermal stability of IHTM copolymers were confirmed by FTIR, $^1H$ NMR, and TGA analysis. The anion membrane properties such as water uptake, ion exchange capacity, electric resistance and electrical conductivity, were measured by gravimetry, titration and LCR meter. The efficiency of the all-vanadium redox flow battery was analyzed. The ion exchange capacity, electric resistance and electrical conductivity were 1.10 meq/g, $1.98{\Omega}{\cdot}cm^2$, and 0.009 S/cm, respectively. The efficiency of charge-discharge, voltage, and energy for the allvanadium redox flow battery were 96.5, 74.6, 70.0%, respectively.

Convenient Preparation of Ion-Exchange PVdF Membranes by a Radiation-Induced Graft Polymerization for a Battery Separator (배터리 분리막을 위한 이온교환형 PVdF 맴브레인의 방사선 그래프트법에 의한 간편한 제조법)

  • Kim, Sang-Kyum;Ryu, Jung-Ho;Kwen, Hai-Doo;Chang, Choo-Hwan;Cho, Seong-Ho
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.126-132
    • /
    • 2010
  • A cation-exchange nanofiber poly(vinylidene fluoride) (PVdF) membrane was prepared by a radiation-induced graft polymerization (RIGP) of sodium styrene sulfonate (NaSS) in the presence of the polymerizable access agents in methanol solution. The used polymerizable access agents include styrene, acrylic acid, and vinyl pyrrolidone. The anion-exchange nanofiber PVdF membrane was also prepared by RIGP of glycidyl methacrylate (GMA) and its subsequent chemical modification. The successful preparations of cation- and anion-exchange PVdF membranes were confirmed via SEM, XPS and thermal analysis. The content of the grafting yield, ion-exchange group, and water uptake was in the range of 30.0~32.3%, 2.81~3.01 mmol/g and 66.6~147%, respectively. The proton conductivity at 20$^{\circ}C$ was in the range of 0.020~0.053 S/cm. From the result, the prepared ionexchange PVdF membrane can be used as a separator in battery cells.