• Title/Summary/Keyword: Anions

Search Result 786, Processing Time 0.028 seconds

Effect of Neutral Salts on the Reactive Dyeing of Silk (II) - Effect of Anions - (중성염이 견의 반응염색에 미치는 영향 (II) - 음이온의 영향 -)

  • 도성국;박찬헌;권지윤
    • Textile Coloration and Finishing
    • /
    • v.13 no.2
    • /
    • pp.114-119
    • /
    • 2001
  • Four kinds of neutral sodium salts with different anions, NaF, NaCl, NaBr, and NaI, were added to the dye bath to accurately understand the effect of anions on the reactive dyeing of silk with C. I. Reactive Black 5. The sodium cation towered the negative surface potential of the silk and increased the dye-uptake on fille fabric as reported previously. However, because of the discrepancy in the anions'inhibition power from cation's lowering: the surface negative potential the amount of the dye on the silk fiber was different from each other in the order of $F^->Cl^-> Br^-I^-$. The activation energy(E$_{a}$) lot the dyeing was in the order of $F^->Cl^-> Br^-I^-$ but the dye-uptake on the fabric and the activation free energy$(\Delta{G}^*)$, the real energy barrier fort the reaction, were in the order of $F^->Cl^-> Br^-I^-$ because the strength of the interaction of the anions with sodium cations was the salute as the order of the latter. In other words F$^{[-1000]}$ exerted the weakest electrostatic force on $Na^+$ and competed with the dyestuff anions least of all. The decrease in $\Delta{S}^*$ may be due to the looesly bonded activated complex of dyestuff anions, sodium cations and fiber molecules at transition state. It was clarified from the Brёnsted equation that sodium salts with different anions also had fille ionic strength effect and the specific salt effect on the reactive dyeing.g.

  • PDF

Electronic Absorption and Raman Spectroscopic Studies of ${\alpha},{\omega}$-Diphenylpolyenyl Anions with Odd Number of Polyene Carbons

  • Kim, Jin Yeol;Kim, Eung Ryeol;Ju, Jae Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.837-841
    • /
    • 2001
  • The electronic absorption and Raman spectra of $\alpha\omega-diphenylpolyenyl$, anions Ph(CH)nPh- (DPn- , n = 3, 5, 7, 9, and 13), with odd number of carbons at the polyene part, have been studied in the tetrahydrofuran (THF) solutions and in their solid film states, respectively. In the case of Raman spectra for DPn- , the frequencies and relative intensities of some Raman peaks regularly change with the increase of polyene chain length. The spectral patterns of anions (DPn- ) are very similar with those of radical anion (DPn${\cdot}$- ). However, the C=C stretching peaks of DPn- anions are observed in the 25-35 cm-1 higher frequency region than those of DPn${\cdot}$- radical anions. In the case of long chain models such as DP9- and DP13- , the C=C stretching peaks are observed in even higher frequency region than those of the corresponding neutral polyenes such as DP8, DP10, and DP12. The Raman patterns of DPn- anions in the THF solutions are similar with those in their solid film states. On the other hand, their electronic absorption spectra show a considerable difference each other. The n- ${\pi}*$ electronic absorption bands of DPn- anions in the THF solutions have been observed in the 0.27-0.39 eV lower energy region than those in their solid film states due to the solvent effects on polyene anions.

Transdermal Permeation-enhancing Activities of some Inorganic Anions

  • Ko, Young-Il;Kim, Sung-Su;Han, Suk-Kyu
    • Archives of Pharmacal Research
    • /
    • v.18 no.4
    • /
    • pp.231-236
    • /
    • 1995
  • Effects of sodium salts of various monovalent inorganic anions on transdermal permeation of salicylic acid were investigated. In in-vitro experiment using a Franz-type diffusion cell and excisicylic acid were investigated. In-vitro experiment using a Franze-type diffusion cell and excised mouse skin, the permeation-enhancing activities of the sodium salts of inoraganic anions were rougly proportional to lyotropic Hofmeister serlling abilities of the anions l F/sup -/

  • PDF

Ab Initio Studies of Hydrogen Bihalide Anions: Anharmonic Frequencies and Hydrogen-Bond Energies

  • Cheong, Byeong-Seo
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.4
    • /
    • pp.237-245
    • /
    • 2019
  • Hydrogen bihalide anions, $XHX^-$ (X = F, Cl, and Br) have been studied by high level ab initio methods to determine the molecular structure, vibrational frequencies, and energetics of the anions. All bihalide anions are found to be of linear and symmetric structures, and the calculated bond lengths are consistent with experimental data. The harmonic frequencies exhibit large deviations from the experimental frequencies, suggesting the vibrations of these anions are very anharmonic. Two different approaches, the VSCF and VPT2 methods, are employed to calculate the anharmonic frequencies, and the results are compared with the experimental frequencies. While the ${\nu}_1$ and ${\nu}_2$ frequencies are in reasonable agreement with the experimental values, the ${\nu}_3$ and ${\nu}_1+{\nu}_3$ frequencies still exhibit large deviations. The hydrogen-bond energies and enthalpies are calculated at various levels including the W1BD and G4 composite methods. The hydrogen-bond enthalpies calculated are in good agreement with the experimental values.

Self-assembly Coordination Compounds of Cu(II), Zn(II) and Ag(I) with btp Ligands (btp = 2,6-bis(N'-1,2,4-triazolyl)pyridine):Counteranion Effects

  • Kim, Cheal;Kim, Sung-Jin;Kim, Young-Mee
    • Korean Journal of Crystallography
    • /
    • v.16 no.2
    • /
    • pp.107-127
    • /
    • 2005
  • Five Cu(II) compounds were obtained from different copper salts with btp ligands, and their structures were determined by X-ray crystallography. The structure of coordination polymer 2 contains btp-bridged tetranuclear Cu(II) units weakly connected by nitrate ions, and the structure of a discrete Cu(II) molecule 1 contains acetates and btp ligands. With perchlorate anions, two btp ligands bridge Cu(II) ions to form a double zigzag chain 3, while a single zigzag chain 4 is created with sulfate anions. The reaction of $Cu(NO_{3})_{2}$ containing $NH_{4}PF_{6}$ with btp ligands also produced a polymeric compound 5 containing $Cu(H_{2}O)_{2}^{2+}$ and $Cu(NO_{3})_{2}$ units alternatively bridged by btp ligands with H-bonds between copper bonded water and nitrate oxygen atoms. Five Zn(II) compounds were obtained from different zinc salts with btp ligands, and the structures of polymeric compounds (6, 7 and 8) and monomeric compounds (9 and 10) were determined by X-ray crystallography. With nitrate, chloride and bromide anions, btp ligands bridge Zn(II) ions to form polymeric compounds (6, 7 and 8), but btp ligands coordinate to a Zn(II) ion to form monomeric complexes (9 and 10) with $PF_{6}^{-}$ and perchlorate anions. Four silver salts and btp ligands produced two kinds of structures, dinuclear 20-membered rings and one-dimensional zigzag chain depending on different anions. For $ClO_{4}^{-}$ and OTf anions, weak interactions between Ag(I) and anions make dinuclear 20-membered rings construct polymeric compounds (11 and 13). For $PF_{6}^{-}$ anion, there are also weak interactions between Ag(I) and $F(PF_{6}^{-})(12)$, but they do not construct a polymeric compound. For $O_{2}CCF_{3}^{-}$ anion, btp ligands bridge Ag(I) atoms to make one-dimensional zigzag chain (14), and there are also interactions between Ag(I) and anions.

Effect of Neutral Salts on the Reactive Dyeing of Silk (Ⅱ) - Effect of Anions - (중성염이 견의 반응염색에 미치는 영향 (Ⅱ) - 음이온의 영향 -)

  • Do, Seong Guk;Park, Chan Heon;Gwon, Ji Yun
    • Textile Coloration and Finishing
    • /
    • v.13 no.2
    • /
    • pp.28-28
    • /
    • 2001
  • Four kinds of neutral sodium salts with different anions, NaF, NaCl, NaBr, and NaI, were added to the dye bath to accurately understand the effect of anions on the reactive dyeing of silk with C. I. Reactive Black 5. The sodium cation lowered the negative surface potential of the silk and increased the dye-uptake on fille fabric as reported previously. However, because of the discrepancy in the anions′inhibition power from cation′s lowering the surface negative potential the amount of the dye on the silk fiber was different from each other in the order of $F^-\;>\;Cl^-\;>\; Br^-\;>\;I^-$. The activation energy($E_a$) for the dyeing was in the order of $F^-\;>\;Cl^-\;>\; Br^-\;>\;I^-$ but the dye-uptake on the fabric and the activation free energy(Δ$G^*$), the real energy barrier for the reaction, were in the order of $F^-\;>\;Cl^-\;>\; Br^-\;>\;I^-$ because the strength of the interaction of the anions with sodium cations was the same as the order of the latter. In other words $F^-$ exerted the weakest electrostatic force on $Na^+$and competed with the dyestuff anions least of all. The decrease in Δ$S^*$may be due to the looesly bonded activated complex of dyestuff anions, sodium cations and fiber molecules at transition state. It was clarified from the Bronsted equation that sodium salts with different anions also had fille ionic strength effect and the specific salt effect on the reactive dyeing.

Anion Exchange Membrane Having Permselectivity specific Anion in Electrodialysis

  • Sata, Toshikatsu
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.1-6
    • /
    • 1998
  • To change permselectivity between anions through the anion exchange membrane in electrodialysis, the various modified anion exchange membranes were prepared: highly crosslinked anion exchange membranes, anion exchange membranes having benzyl trialkylammonium groups with different carbon number of alkyl chain as anion exchange groups and anion exchange membranes having pyridinium groups with a hydrophilic or hydrophobic substituent at a different position as anion exchange groups. It became clear from the evaluation of these membranes that the degree of the hydrophilicity of the anion exchange membranes greatly affects the permselectivity between two artions. To increase the hydrophiticity of the anion exchange membranes further, electrodialysis was carried out in the presence of ethylene glycols and the permeation of strongly hydrated anions increased and that of less-hydrated anions decreased. It became clear that the change in the permselectivity between two artions is due to the change in the affinity of anions to the membranes, not the change in mobility ratio of the anions in the membranes phase.

  • PDF

Infrared Absorption Spectroscopic Studies of ${\alpha},{\omega}$-Diphenylpolyenyl Anions with Odd Numbered Polyene Molecules

  • Kim, Jin Yeol;Kim, Eung Ryeol;Son, Dae Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.833-836
    • /
    • 2001
  • Infrared absorption spectra of $\alpha\omega-diphenylpolyenyl$, anions Ph(CH)nPh- (DPn-, n=7, 9, and 13) in the tetrahydrofuran-d6 solutions was measured in the range of 1700 and 1200 cm-1 . The infrared spectra obtained from anions (DPn) showed considerable difference from their neutral species (DPn); their intensities were enhanced at least two orders of magnitude stronger than their neutral species. The in-plane CH bending modes at 1464 and 1375 cm-1 are correspondingly strengthened with the chain length increased, but the C=C stretching at 1541 cm-1 is weakened and frequencies are not changed. We provide an IR evidence for the first time that the bond order or bond alternations of the anions (soliton) are different from those of radical anions (polaron) as well as neutral species.

Competition of Sulfate for Sorption Sites of Cecil Bt Soil in Binary Anion System (2중 음이온 체계내에서 시슬 Bt토양의 흡착부위에 대한 황산이온의 경쟁)

  • Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.2
    • /
    • pp.250-260
    • /
    • 1996
  • Observed results of the adsorption between two competing anions for the shared sorption sites represent that the adsorption phenomena may depends on the characteristics of anion and available sorption sites in a given conditions. In binary systems, adsorption of one species can significantly influence the fate of the other anion, resulting in control of the extent of solute-adsorbate distributions throughout soil profile. And the proton-donation mechanisms by organic anions having a carboxyl as a functional group can also influence the adsorption of inorganic anions onto the hydroxylated sites of Fe and Al oxides. However, study of competitive adsorption of specifically adsorbed anions illustrates some of difficulties which arise in interpretation of reactions at oxide/aqueous solution interfaces. At least two factors prevented a simple analysis of reactions. First, at any pH value the maximum amount of adsorbate taken up at the surface depends on the identity of the anion. Second, it was necessary to postulate the sorption sites where the anion can be adsorbed. Hence, anions having non-specific adsorption characteristics are less capable for sorption sites, compared to those of specific adsorption characteristics, even though competition complies both ordinary and electrostatic interactions for sorption sites. Therefore, competition among chemical species in soil matrix can be of major significance in determining the effective mobility of any reactive anions with sorption sites.

  • PDF

Determination of Some Inorganic Anions in Saline Water by Ion Chromatography with UV Detection (이온크로마토그래피를 이용한 소금물중의 무기음이온들의 분리정량)

  • Han, Sun Ho;Park, Yang Soon;Park, Soon Dal;Joe, Kih Soo;Eom, Tae Yoon
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.99-104
    • /
    • 1999
  • A stepwise gradient elution with two wavelengths detection was performed for the separation and determination of some anions in saline water. The eight anions such as iodate, bromate, nitrite, bromide, nitrate, chromate, iodide and thiocyanate were successfully separated using AS-7 column and sodium chloride/sodium phosphate buffer solution as an eluant within 40 min. The separation behaviors of anions were studied at various sodium chloride concentrations. The peak shapes of anions of bromate, nitrite, bromide and nitrate gradually broadened as the concentration of sodium chloride increased until 1.0 M in the sample solutions. However, no effect was observed in the peak shapes of chromate, iodide and thiocynate. A good linearity was obtained at the range of ppm(mg/L). The detection limit was proved to be $10-720{\mu}g/L$ for the eight anions with $50{\mu}L$ injection volume. This method was applied to the determination of $Br^-$, ${NO_3}^-$ and $I^-$ in sea water.

  • PDF