• Title/Summary/Keyword: Anti impact property

Search Result 13, Processing Time 0.025 seconds

Effect on Anti-impact and Anti-thermal Fatigue Properties of STD61 Material Affected by Gas Quenching Pressure of Quenching Process (STD61 공구강의 내충격 및 내열피로 특성에 미치는 가스 퀜칭 압력의 영향)

  • Park, Hyun-Jun;Choi, Kwang-Jin;Kim, Jong-Yeob;Shin, Seung-Yong;Moon, Kyoung-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.6
    • /
    • pp.277-283
    • /
    • 2016
  • The influences of cooling pressure of quenching process on the mechanical properties such as hardness, impact endurance and anti-thermal fatigue behaviour of STD61 steel were investigated. The specimens were heat-treated using a vacuum furnace in which they were austenitized at $1,030^{\circ}C$ for 1hour under the pressure of $10^{-3}$ torr and cooled with quenching gas of various pressure, i.e. 1, 2 and 6 bar. According to the observation on the specimens prepared with quenching from austenizing temperature, the mechanical properties of the samples with higher quenching pressure were better than those of prepared at lower quenching pressure. The samples prepared with high quenching pressure showed the more homogeneous microstructure with finer carbides. The size of carbides such as VC and (Fe, Cr)C in quenched specimens decreased with increasing gas quenching pressure. It is considered that the rapid cooling with pressure may restrict the formation and growth of carbide.

Performance Appraisal of the Ceramic Metal Resin Paints for Waterproof and Anti-Corrosion to Improve the Property of Concrete Structure (콘크리트 구조물의 표층부 내구성 증진을 위한 세라믹 메탈계 방수$\cdot$방식재 도료의 성능 평가 연구)

  • Jun Byung-Hun;Kim Jin-Sung;Kang Hyo-Jin;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.113-117
    • /
    • 2005
  • The ceramic metal resin paints for waterproof and anti corrosion is not long history in development of materials even many actual result. So far, no standard have been given to construction and maintenance method, Quality and property, it is real state that cannot afford to proper quality control in job site or production. This study has been test for the ceramic metal resin paints for water and anti corrosion, as the result, it have proper performance of job site and mechanical performance of compare to other existing. In particular, tensile strength indicates more high about $14.1N/mm^2$ than epoxy resin paints, and in elongation per unit length is more high It is shows having better adhesive strength than epoxy resin paint for crack on the concrete structure. Moreover, The ceramic metal paint for water and corrosion proofing have to have main performance is watertightness and resistance for external impact, chloride ion permeation, drinkable water elution.

  • PDF

Evaluation of Impact Energy Absorption Characteristics of Flexible Sand Asphalt Pavement for Pedestrian Way (보도용 연성 샌드 아스팔트 포장의 충격흡수 특성 평가)

  • Choi, Chang-jeong;Dong, Baesun;Kim, Kwang W.;Kim, Sungun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.31-41
    • /
    • 2019
  • More than 90% of roadway in the world are paved as asphalt concrete pavement due to its excellent properties compared with other paving materials; excellent riding quality, flexibility, anti-icing property and easy maintenance-ability. In this study, to make best use of the softer property of the asphalt mixture, the flexible sand asphalt mixture (FSAM) was developed for pedestrian ways. The mix design was conducted to prepare FSAM using PG64-22 asphalt, screenings (sand) less than 5mm, crumb rubber, hydrated lime and limestone powder without coarse aggregate. The deformation strength ($S_D$), indirect tensile strength (ITS) and tensile strength ratio (TSR) tests were conducted to make sure durability of FSAM performance. The impact energy absorption and flexibility were measured by drop-boll test and the resilient modulus ($M_R$) test. The impact energy absorption of FSAM was compared with normal asphalt pavement, concrete pavement, stone and concrete block for pedestrian way. As a result of drop-boll test, FSAM showed higher impact energy absorption compared with other paving materials with the range of 18% to 43%. Impact energy absorption of FSAM increased with increasing test temperature from 5 to $40^{\circ}C$. The results of $M_R$ test at $5^{\circ}C$ showed that the flexibility of FSPA was increased further, because the $M_R$ value of the sand asphalt was measured to be 38% lower than normal dense-graded asphalt mixture (WC-1). Therefore, it was concluded that the FSAM could provide a high impact absorbing characteristics, which would improve walking quality of the pedestrian ways.

Conservation Treatment of Sand Stone by Pressurized Impregnation with Acrylic Materials (아크릴계 보존처리제를 이용한 사암의 가압함침 보존처리)

  • Kim, Youn-Cheol;Kim, Sa-Duk;Kim, Hyung-Joong
    • Journal of Conservation Science
    • /
    • v.27 no.4
    • /
    • pp.395-401
    • /
    • 2011
  • After pressurized impregnation treatment, which has been proposed as an effective conservation method for stone cultural property, was executed with methyl metacrylate (MMA), MMA-butyl acrylate (PMB73) mixture and MMA-vinyl trimethoxy silane (PMV5) co-monomer mixture, the physical-chemical properties on the sand stone and the granite impregnated were evaluated. Compared to the case of granite, the impregnation ratios of sand stone showed larger values in the range of 3.2 to 3.7 wt% and these were increased up to 32% when the decompression process was applied to autoclave. The physical properties of sand stone such as anti-moisture property, flexural strength, impact property and ultrasonic velocity were also higher values than those of granite, which can be interpreted by high impregnation ratio resulted in many void within sand stone. The impact failure energy was 1.22 J for PMMA, 1.84 J for PMB73, and 2.8 J for PMV5, respectively. Since the inorganic affinity of treatment agent is more effective than the molecular structure of acrylic agent, PMV5 improved inorganic property indicates the optimum impact property.

Effect of Urethane Modification on the Anti-Bullet Property of Dyneema/vinylester Composites (우레탄 수지 첨가에 의한 다이니마/비닐에스터 복합재료의 방탄효과 향상 연구)

  • Yoon, T.H.;Cha, Y.M.;Yuck, J.I.;Paik, J.G.;Oh, Y.J.;Kim, H.J.
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.7-11
    • /
    • 2011
  • Polyurethane oligomers (PUOs) such as UA8297, UP127 and EB8200 were utilized to enhance the anti-bullet property of Dyneema$^{(R)}$/vinylester composites. First, prepregs of PUO and vinylester (XSR10) were prepared via spray coating on Dyneema$^{(R)}$ fabric at 21 % resin content (by volume). In addition, spray coating and film lamination were also carried out with a mixture of XSR10/PUO for selected PUOs. Next, the prepregs were dried at RT for 1-2 h and then at $100^{\circ}C$ for 30 min to remove the solvent and to provide partial cure when necessary. The prepregs were stacked in 24 layers and cured at $120^{\circ}C$ for 5 min under the contact pressure and for additional 25 min at 150 $kg/cm^2$. Finally, the anti-bullet properties of composite samples were evaluated by measuring $V_{50}$ with simulated fragment projectile (SFP, 17 gr). The results showed a 6.5 and 9.0 % increase of $V_{50}$ with UP127 and EB8200, respectively.

Transient Response of Functionally Graded Piezoelectric Ceramic with Crack (균열이 있는 기능경사 압전 세라믹의 충격 특성에 관한 연구)

  • Jeong Woo Shin;Tae-Uk Kim;Sung Chan Kim
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.21-27
    • /
    • 2003
  • Using the theory of linear piezoelectricity, the dynamic response of a central crack in a functionally graded piezoelectric ceramic under anti-plane shear impact is analyzed. We assume that the properties of the functionally graded piezoelectric material vary continuously along the thickness. By using the Laplace and Fourier transform, the problem is reduced to two pairs of dual integral equations and then into Fredholm integral equations of the second kind. Numerical values on the dynamic stress intensity factors are presented to show the dependence of the gradient of material properties and electric loading.

Characteristics of Meta-aramid Fabrics Coated with Slurry of Nanoscale SiC Particles (나노 탄화규소(SiC) 슬러리로 코팅된 메타-아라미드 직물의 특성)

  • Park, Jong Hyeon;Lee, Sun Young;Won, Jong Sung;Lee, Eung Bo;Kim, Eui Hwa;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.29 no.3
    • /
    • pp.131-138
    • /
    • 2017
  • Most of high performance fabrics for the car racing protective clothing have been developed to have thermal resistance, flame retardant property, impact resistance and anti-frictional properties to protect the racer from the crucial accident. In this study, the meta-aramid fabric, which has inherent flame retardant, was coated with nanoparticles of SiC to enhance the impact resistance and anti-friction properties. Uniform coating of the nanoparticles onto the fabrics was obtained by using tape casting method. As the experimental parameters, size and content of the SiC nanoparticle were varied with the coating conditions of the fabric surface. The effects of the nanoparticle coating on the properties of meta-aramid fabric were examined with various instrumental analyses such as SEM, tensile strength and abrasion test.

Lightweight and Performance of Anti-Collision Strength of Automobiles Based on Carbon Fiber Composites

  • Zhang, Hongtao
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.525-531
    • /
    • 2019
  • The widespread use of automobiles has greatly increased energy demand and exhaust gas pollution. In order to save energy, reduce emissions and protect the environment, making lightweights automobiles is an effective measure. In this paper, carbon fiber composites and automobile B-pillars are briefly introduced, and then the mechanical properties and impact resistance of the DC590 steel B-pillars and carbon fiber composites B-pillars are simulated by the ABAQUS finite element software. The results show that the quality of compound B-pillars is reduced by 50.76 % under the same dimensions, and the mechanical property of unit mass is significantly better than that of metal B-pillars. In the course of a collision, the kinetic energy of the two B-pillars is converted into internal energy, but the total energy remains the same; the converted internal energy of the composite B-pillars is greater, the deformation is smaller and the maximum intrusion and intrusion speed is also smaller, indicating that the anti-collision performance of the composite B-pillars is excellent. In summary, the carbon fiber composites can not only reduce the quality of the B-pillars, but also improve their anti-collision performance.

Impact of mesenchymal stem cell senescence on inflammaging

  • Lee, Byung-Chul;Yu, Kyung-Rok
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.65-73
    • /
    • 2020
  • Life expectancy has dramatically increased around the world over the last few decades, and staying healthier longer, without chronic disease, has become an important issue. Although understanding aging is a grand challenge, our understanding of the mechanisms underlying the degeneration of cell and tissue functions with age and its contribution to chronic disease has greatly advanced during the past decade. As our immune system alters with aging, abnormal activation of immune cells leads to imbalance of innate and adaptive immunity and develops a persistent and mild systemic inflammation, inflammaging. With their unique therapeutic properties, such as immunomodulation and tissue regeneration, mesenchymal stem cells (MSCs) have been considered to be a promising source for treating autoimmune disease or as anti-aging therapy. Although direct evidence of the role of MSCs in inflammaging has not been thoroughly studied, features reported in senescent MSCs or the aging process of MSCs are associated with inflammaging; MSC niche-driven skewing of hematopoiesis toward the myeloid lineage or oncogenesis, production of pro-inflammatory cytokines, and weakening their modulative property on macrophage polarization, which plays a central role on inflammaging development. This review explores the role of senescent MSCs as an important regulator for onset and progression of inflammaging and as an effective target for anti-aging strategies.

An Empirical Study on Factors Affecting the University Students' Software Piracy Intention (대학생들의 S/W 불법복제 의도에 영향을 미치는 요인에 관한 연구)

  • Jeon, Jin-Hwan;Kim, Jong-Ki
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.2
    • /
    • pp.127-140
    • /
    • 2009
  • Recently, software piracy is one of the serious crimes for the digital materials. It makes economically devasting to the software industry and the market. In particular, it is a widespread phenomenon among university students in Korea and negative affects in measuring social and cultural level. Many studies have been focused on the users' intention of the software piracy for making anti-piracy policy. The purpose of this study is to investigate the factors affecting university students' software piracy intention. The survey includes responses from 271 university students in a school of business adminstration. The research model was estimated with multiple regression. The analysis showed results that user's characteristics, subjective norms, and perceived software quality were significantly related to intention of software piracy, but security policy was not. Perceived importance of intellectual property has negative impact on user's software piracy intention. Based on the findings, we suggest the implications for developing and implementing appropriate policies for anti-piracy.