• Title/Summary/Keyword: Anti-freeze coolant

Search Result 5, Processing Time 0.018 seconds

Effect of the Anti-Freeze Coolant on the Corrosion Resistance of Aluminum Cylinder Heads (알루미늄 실린더헤드의 내식성에 미치는 부동액의 영향)

  • 김영찬;배도인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.89-95
    • /
    • 1999
  • In this study, the corrosion resistance of the aluminum casting commercial materials used in the automotive engine parts with respect to the anti-freeze coolant environment has been tested by the potentio dynamic method. especially, the effect of borax additive in engine coolant on the corrosion resistance of the aluminum casting materials has been evaluated. It was found that the borax in commercial engine coolant, used to prevent the corrosion in cast iron engine, causes a pit corrosion of aluminum casting materials at high temperature. During the engine endurance test with the coolant containing borax, the aluminum cylinder head was failed by the pitting corrosion near the exhaust port. Conclusively, it was suggested that the use of borax in the anti-freeze coolant be restricted for the automotive with aluminum cylinder head.

  • PDF

A Fundamental Study on the Effectiveness of Anti-freeze Agent Using Waste Coolant in Cold Weather Concreting (한중콘크리트에 있어서 폐부동액을 이용한 내한제의 효율성에 관한 기초적 연구)

  • Kim, Kyoung-Min;Won, Cheol;Kim, Gi-Cheol;Oh, Sun-Kyo;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.231-236
    • /
    • 2001
  • In this paper, tests are carried out in order to investigate the validities of anti-freeze agent, which is developed using waste coolant and existing anti-freeze agent through previous study, under various W/C and contents. According to test results, adequate dosage of developed anti-freeze agent shows positive performance in slump, air content and chloride contents in the mixture of 40% and 50% of W/C, accelerates setting time and drops the freezing temperature of concrete. Meanwhile, in the region of 30% of W/C, followings can be indicated that increasing the contents of anti-freeze agent leads to reduce fluidity, rapid setting and excessive chloride contents. Improved strength gain is shown when anti-freeze agent is used with in 8%.

  • PDF

Device Development of Mixture Concentration of Ethylene Glycol Antifreeze Coolant for Vehicles (자동차 에틸렌글리콜 부동액의 혼합 농도 측정 장치 개발)

  • Lee, Dae-Woong;Lee, Eun-Woung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.331-336
    • /
    • 2016
  • This study presents a coolant density calculation device and its corresponding method by using a mass flowmeter and the LabVIEW program. The method can be easily measured with a mixture of coolant and by calculating the percentage of ethylene-glycol without additional investment. The cooling water is very important in a vehicle to protect the engine, and the cooling performance is affected by the mixture concentration and coolant density. The coolant density calculation device measures the mixed concentration in the anti-freeze cooling mixture made from distilled water and ethylene-glycol in real time with the mass flowmeter that is commonly attached to the radiator or heater core. The calculation program for the mixture concentration percentage was developed using the LabVIEW software. The correlation between experimental results and the calculation was conducted for a range of temperature from 40 to $90^{\circ}C$ and by varying the mixture ratio of distilled water and ethylene-glycol. As a result, the anti-freeze coolant concentration in the volume percentage is able to monitor the coolant density in a timely basis by implementing a mixture concentration calculation program without the need for additional equipment investment. The results of the calculation for the mixture concentration level show a maximum 2.7% deviation compared to the experimental results.

Automotive Engine Performance Analysis of antifreeze content and water type (부동액 함유량과 냉각수 종류에 따른 자동차 엔진 성능분석)

  • Hong, Sung-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1594-1599
    • /
    • 2015
  • The world car industry is in an era of internal combustion engines in the past 100 years of environmental, energy and IT is eco-friendly, high-tech cars technologies are bringing an era of change. Until now, the study of new technologies in automobile research and development has been focused on. The car's new technology development is also important, but it's cutting-edge technology is used in the car before the car's performance, and became an important point in the customer experience improvement problems. New technology development, as well as effective for existing technology applied is also important. This study was to determine the effects of temperature and the performance of automobile engine and determine the cause of the content in accordance with the type(tap water, distilled water, underground water) of anti-freeze and water that is contained in the automotive engine cooling water for the effective application of the anti-freeze. In the freezing point of the coolant -10, -20, -30, -40, $-50^{\circ}C$ dynamo performance test was conducted with the numerical analysis. Water (distilled water) were measured at the reference point peak performance 71.112, 99.622hp freezing $-10^{\circ}C$.

According to the type of commercial antifreeze experimental study of vehicle emissions (상용부동액 종류에 따른 자동차 배출가스의 실험적 연구)

  • Hong, Sung-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.4002-4006
    • /
    • 2014
  • The automotive exhaust gases generated by the vehicles containing carbon monoxide, hydrocarbons and lead, is a large concern because of their harm to human health or the living environment. To reduce exhaust gas, it is important to develop a variety of techniques that are currently being used by elemental analysis to determine the optimal conditions. In this study, the anti-freeze coolant contained in the exhaust gas was examined, which can affect the emissions. The effects of the commercially available coolant from five domestic companies on the HC, NOx and $CO_2$ emissions were analyzed to determine the optimal amount of antifreeze. In addition, antifreeze products from the five companies were analyzed with respect to driving time of the cooling fan and the correlation of the NOx emission analysis. The temperature of the engine oil was matched using a manual gear of small passenger inspection standard speed $40{\pm}2Km/h$ so the vehicle could meet the specifications for inspection $90{\sim}93^{\circ}C$. The Company D fan operation time resulted in the shortest antifreeze, $CO_2$ and NOx emissions.