• Title/Summary/Keyword: Anti-reflection layer

Search Result 94, Processing Time 0.038 seconds

두께 및 굴절률 변화와 이중층 구조에 따른 Anti-Reflection Layer의 특성변화에 관한 연구

  • An, Si-Hyeon;Park, Cheol-Min;Jo, Jae-Hyeon;Jang, Gyeong-Su;Baek, Gyeong-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.395-395
    • /
    • 2011
  • 일반적으로 태양전지에서 anti-reflection layer는 조사되는 태양 광을 좀 더 많이 사용하기 위하여 nitride나 oxide와 같은 막을 표면에 형성한다. 본 연구는 이 anti-reflection으로 사용되는 nitride와 oxide의 각각의 두께와 굴절률 변화에 따른 특성변화를 SILVACO를 이용하여 전산모사하고 그 특성변화를 분석하였다. Anti-reflection layer가 없을 경우에는 조사된 빛에 따른 available photo current 활용이 낮았으며, 특히 그 경향은 단파장영역에서 두드러지게 나타났다. 따라서 anti-reflection layer의 최적화를 위해서 두께를 가변하여 available photo current를 분석하였으며, 각 물질의 굴절률 변화 및 이중층 구조의 anti-reflection layer를 형성하고 특성변화를 분석함으로써 최적화하였다.

  • PDF

The optical properties of columnar structure according to the growth angles of ZnO thin fims (성장각도에 따른 주상구조 ZnO 박막의 광학적 특성)

  • Ko, Ki-Han;Seo, Jae-Keun;Kim, Jae-Kwang;Kang, Eun-Kyu;Park, Mun-Gi;Ju, Jin-Young;Shin, Yong-Deok;Choi, Won-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.127-127
    • /
    • 2009
  • The most important part of the fabrication solar cells is the anti-reflection coating when excludes the kinds of silicon substrates (crystalline, polycrystalline, or amorphous), patterns and materials of electrodes. Anti-reflection coatings reduce the reflection of sunlight and at last increase the intensity of radiation to inside of solar cells. So, we can obtain increase of solar cell efficiency about 10% using anti-reflection coating. There are many kinds of anti-reflection film for solar cell, such as SiN, $SiO_2$, a-Si, and so on. And, they have two functions, anti-reflection and passivation. However such materials could not perfectly prevent reflection. So, in this work, we investigated the anti-reflection coating with the columnar structure ZnO thin film. We synthesized columnar structure ZnO film on glass substrates. The ZnO films were synthesized using a RF magnetron sputtering system with a pure (99.95%) ZnO target at room temperature. The anti-reflection coating layer was sputtered by argon and oxygen gases. The angle of target and substrate measures 0, 20, 40, 60 degrees, the working pressure 10 mtorr and the 250 W of RF power during 40 minutes. The confirm the growth mechanism of ZnO on columnar structure, the anti-reflection coating layer was observed by field emission scanning electron microscopy (FE-SEM). The optical trends were observed by UV-vis and Elleso meter.

  • PDF

Anti-reflection Coating of PDMS by Screen-printing on Large Area of Silicon Solar Cells (대면적 실리콘 태양전지의 PDMS 도포에 의한 반사방지막 특성)

  • MyeongSeob, Sim;Yujin, Jung;Dongjin, Choi;HyunJung, Park;Yoonmook, Kang;Donghwan, Kim;Hae-Seok, Lee
    • Current Photovoltaic Research
    • /
    • v.10 no.4
    • /
    • pp.95-100
    • /
    • 2022
  • Solar cell is a device that converts photon energy into electrical energy. Therefore, absorption of solar spectrum light is one of the most important characteristics to design the solar cell structures. Various methods have emerged to reduce optical losses, such as textured surfaces, back contact solar cells, anti-reflection layers. Here, the anti-reflection coating (ARC) layer is typically utilized whose refractive index value is between air (~1) and silicon (~4) such as SiNx layer (~1.9). This research is to print a material called polydimethylsiloxane (PDMS) to form a double anti-reflection layer. Light with wavelength in the range of 0.3 to 1.2 micrometers does not share a wavelength with solar cells. It is confirmed that the refractive index of PDMS (~1.4) is an ARC layer which decreases the reflectance of light absorption region on typical p-type solar cells with SiNx layer surface. Optimized PDMS printing with analyzing optical property for cell structure can be the effective way against outer effects by encapsulation.

Anti-Reflection Thin Film For Photoelectric Conversion Efficiency Enhanced of Dye-Sensitized Solar Cells (염료감응형 태양전지의 광전변환효율 향상을 위한 무반사 박막)

  • Jung, Haeng-Yun;Ki, Hyun-Chul;Hong, Kyung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.814-818
    • /
    • 2016
  • DSSCs (dye-sensitized solar cells) based on $TiO_2/SiO_2$ multi layer AR (anti-reflection) coating on the outer glass FTO (fluorine-doped tin oxide) substrate are investigated. We have coated an AR layer on the surface of a DSSCs device by using an IAD (ion beam-assisted deposition) system and investigated the effects of the AR layer by measuring photovoltaic performance. Compared to the pure FTO substrate, the multi layer AR coating increased the total transmittance from 67.4 to 72.9% at 530 nm of wavelength. The main enhancement of solar conversion efficiency is attributed to the reduction of light reflection at the FTO substrate surface. This leads to the increase of Jsc and the efficiency improvement of DSSCs.

Effect of a SiO2 Anti-reflection Layer on the Optoelectronic Properties of Germanium Metal-semiconductor-metal Photodetectors

  • Zumuukhorol, Munkhsaikhan;Khurelbaatar, Zagarzusem;Kim, Jong-Hee;Shim, Kyu-Hwan;Lee, Sung-Nam;Leem, See-Jong;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.483-491
    • /
    • 2017
  • The interdigitated germanium (Ge) meta-lsemiconductor-metal (MSM) photodetectors (PDs) with and without an $SiO_2$ anti-reflection (AR) layer was fabricated, and the effect of $SiO_2$ AR layer on their optoelectronic response properties were investigated in detail. The lowest reflectance of 15.6% at the wavelength of 1550 nm was obtained with a $SiO_2$ AR layer with a thickness of 260 nm, which was in a good agreement with theoretically calculated film thickness for minimizing the reflection of Ge surface. The Ge MSM PD with 260 nm-thick $SiO_2$ AR layer exhibited enhanced device performance with the maximum values of responsivity of 0.65 A/W, the quantum efficiency of 52.2%, and the detectivity of $2.49{\times}10^9cm\;Hz^{0.5}W^{-1}$ under the light illumination with a wavelength of 1550 nm. Moreover, time-dependent switching analysis of Ge MSM PD with 260 nm- thick $SiO_2$ AR layer showed highest on/off ratio with excellent stability and reproducibility. All this investigation implies that 260 nm-thick $SiO_2$ AR layer, which is effective in the reduction in the reflection of Ge surface, has a great potential for Ge based optoelectronic devices.

Anti-Reflection Coating Application of SixOy-SixNy Stacked-Layer Fabricated by Reactive Sputtering (반응성 스퍼터링으로 제작된 SixOy-SixNy 적층구조의 반사방지 코팅 응용)

  • Gim, Tzang-Jo;Lee, Boong-Joo;Shina, Paik-Kyun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.341-346
    • /
    • 2010
  • In this paper, anti-reflection coating was investigated for decreasing the reflection in visible range of 400~650 [nm] through four staked layers of $Si_xO_y$ and $Si_xN_y$ thin films prepared by reactive sputtering method. Si single crystal of 6 [inch] diameter was used as a sputtering target. Ar and $O_2$ gases were used as sputtering gases for reactive sputtering for the $Si_xO_y$ thin film, and Ar and $N_2$ gases were used for reactive sputtering for the $Si_xN_y$ thin film. DC pulse power of 1900 [W] was used for the reactive sputtering. Refractive index and deposition rate were 1.50 and 2.3 [nm/sec] for the $Si_xO_y$, and 1.94 and 1.8 [nm/sec] for the $Si_xN_y$ thin film, respectively. Considering the simulation of the four layer anti-reflection coating structure with the above mentioned films, the $Si_xO_y-Si_xN_y$ stacked four-layer structure was prepared. The reflection measurement result for that structure showed that a "W" shaped anti-reflection was obtained successfully with a reflection of 1.7 [%] at 550 [nm] region and a reflection of 1 [%] at 400~650 [nm] range.

Study about Anti-Reflection Coating Design and Characteristic of Laser Diode (Laser Diode의 무반사코팅 설계 및 특성에 관한 연구)

  • Ki, Hyun-Chul;Kim, Hyo-Jin;Kim, Hwe-Jong;Han, Hee-Jong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.424-425
    • /
    • 2007
  • Anti-Reflection and High-reflection coating on the facet of semiconductor laser diode. To prevent internal feedback from both facets for realizing super luminescent diode and reducing the reflection-induced intensity noise of laser diode. Anti-Reflection coating Film was designed by Macleod Simulator. Coating Materials were decided $Ti_3O_5$ and $SiO_2$. Thickness of Coating layer $Ti_3O_5/SiO_2$ were 105[nm], 165[nm]. In the study Anti-Reflection coating Film was design for Laser diode and deposited by Ion-Assisted Deposition system. Then manufactured thin film measured electrical properties(L-I-V, Se, Resistor) and Optical properties(wavelength FFP). Slop-efficiency and FFP characteristic is 0.302[W/A], $22.3^{\circ}$(Horizontal), $24.4^{\circ}$(Vertical).

  • PDF

Preparation and characterization of TiO2 anti-reflective layer for textured Si (100)

  • Choe, Jin-U;Nam, Sang-Hun;Jo, Sang-Jin;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.322-322
    • /
    • 2010
  • Recently, anti-reflective films (AR) are one of the most studied parts of a solar cell since these films improve the efficiency of photovoltaic devices. Also, anti-reflection films on the textured silicon solar cells reduce the amount of reflection of the incident light, which improves the device performance due to light trapping of incident light into the cell. Therefore, we preformed two step processes to get textured Si (100) substrate in this experiment. Pyramid size of textured silicon had approximately $2{\sim}9\;{\mu}m$. A well-textured silicon surface can lower the reflectance to 10%. For more reduced reflection, TiO2 anti-reflection films on the textured silicon were deposited at $600^{\circ}C$ using titanium tetra-isopropoxide (TTIP) as a precursor by metal-organic chemical vapor deposition (MOCVD), and the deposited TiO2 layers were then treated by annealing for 2 h in air at 600 and $1000^{\circ}C$, respectively. In this process, the treated samples by annealing showed anatase and rutile phases, respectively. The thickness of TiO2 films was about $75{\pm}5\;nm$. The reflectance at specific wavelength can be reduced to 3% in optimum layer.

  • PDF

Reflection Properties of SiO2/ITO Transparent and Conductive Thin Films for Display (디스플레이용 SiO2/ITO 투명전도막의 반사특성)

  • Shin, Yong-Wook;Kim, Sang-Woo;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.233-239
    • /
    • 2002
  • Reflection properties of $SiO_2$/ITO (Indium Tin Oxide) thin films coated for electromagnetic shielding, anti-static and anti-reflection on the front surface in CRT were studied. The behavior of reflectance as a function of thickness of $SiO_2$/ITO was investigated and applied to theoretical anti0reflection model of double layers and three layers. As the thickness of ITO layer increased, the deviation from theoretical value increased because uniformity of film deteriorated by pore. Because of the effect of mixed layer of $SiO_2$ and ITO, experimental reflectance showed better acceptance to the three layer antireflection model of $SiO_2$/$SiO_2$+ITO/ITO than the two layer model. Based on the theoretical antireflection design, the double layer whose thickness of $SiO_2$ and ITO were 90, 65 nm, respectively appear 2.5% in reflectance at standard wavelength, 550 nm. This phenomenon was similar to theoretical reflectance in visual range.

A Study on the ZnO Anti-reflection Layer of Dye Sensitized Solar Cell using Zinc Nitrate Solution (Zinc nitrate 용액을 이용한 염료감응형 태양전지 반사 방지막에 관한 연구)

  • Choi, Jin-Ho;Seo, Hyun-Woong;Son, Min-Kyu;Kim, Soo-Kyoung;Kim, Byung-Man;Kim, Hee-Je;Prabakar, Kandasamy;Kim, Jong-Rak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.705-710
    • /
    • 2012
  • An anti-reflection layer (AR) is used in the solar cell to improve the amount of the irradiated light, resulting in the improvement of the performance of the solar cell. In this study, the zinc oxide (ZnO) AR is applied to the dye-sensitized solar cell (DSC) by using zinc nitrate solution. The conditions such as solution concentration and sintering temperature for fabricating the ZnO AR are changed to optimize the performance of the AR. As a result, the best performance is shown when the zinc nitrate solution with 100mM concentration is used and the sintering temperature is $600^{\circ}C$. And then, the ZnO AR formed with these optimal conditions is applied to the DSC. Consequently, a DSC with a ZnO AR had an increased current density up to 13.86$mA/cm^2$ and an enhanced efficiency of 6.32%.