• Title/Summary/Keyword: Anticorrosive Organic Coatings

Search Result 9, Processing Time 0.026 seconds

Evaluation of Anticorrosive Performance of Organic Coatings Subjected to Cyclic Wet-dry Exposure (흡 .탈수 반복 환경하에서의 유기도막의 방식성 평가)

  • 박진환;이근대;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.75-79
    • /
    • 2004
  • Organic coatings are widely used to control of the corrosion of a steel structure. The water in coatings may cause the coatings to swell, leading to the degradation of the coatings. In addition, water affects the permeation of oxygen and other corrosive agents, and consequently, the presence of such substances at coating-metal interface promotes corrosion of the metal substrate. In this study, the anticorrosive properties of 4 types of coating, such as epoxy-epoxy, epoxy-urethane, urethane-epoxy, urethane-urethane, were evaluated. The evaluation tests were conducted under cyclic water-absorption/desorption conditions, consisting of alternative exposure to diluted 0.001M-LiCl(a$H_2O$≒1) and concentrated 10M-LiCl(a$H_2O$≒0.15). The anticorrosive performance of coatings was found to decrease in the order of urethane-urethane > urethane-epoxy > epoxy-epoxy coating.

흡.탈수 반복 환경에 있어서 유기도막의 방식성 평가

  • Park, Jin-Hwan;Lee, Geun-Dae;Jeon, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.262-268
    • /
    • 2003
  • Organic coatings are widely used to control the corrosion of steel structure. The water in coatings may cause swelling or solvation of coatings, leading to the degradation of coatings. In addition, water affects the permeation of oxygen and other corrosive agents, and consequently the presence of such substances at coating-metal interface promotes corrosion of metal substrate. In this study, the anticorrosive properties of 4 types of coating, such as epoxy-epoxy, epoxy-urethane, urethane-epoxy, urethane-urethane, were evaluated. The evaluation tests were carried out under cyclic water-absorption/desorption conditions, consisting of alternative exposure to diluted 0.001M-LiCl($a_{1120}{\fallingdotseq}1$) and concentrated l0M-LiCl($a_{1120}{\fallingdotseq}0.05$). The anticorrosive performances of coatings were found to decrease in the order of urethane-urethane> urethane-epoxy> epoxy-epoxy coating.

  • PDF

Measurement of Water Absorption in Anticorrosive Organic Coatings Using Quartz Crystal Microbalance (QCM) (수정진동자 미세저울을 이용한 방식도막의 물 흡수 측정)

  • 이근대;도윤정;김진호;박성수;홍성수;서차수;박진환
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.77-82
    • /
    • 2003
  • The absorption of water into an anti-corrosive organic coating, such as alkyd and urethane resin coating, was investigated, using a quartz crystal microbalance (QCM). Anticorrosive properties of the coatings were also measured, by means of electrochemical impedance spectroscopy (EIS). The overall absorption of water in the coating is determined by the chemical nature of resin, and decreases with increasing thickness. The enhancement of anti-corrosive performance, through increase of coating thickness, was more remarkable in the case of the coating that hadlower equilibrium water absorption. The absorption kinetics curves were Fickian in nature. The EIS analysis confirmed that the resin, having lower equilibrium water absorption, shows higher anti-corrosive performan.

Evaluation Anticorrosive Properties of Corrosion Protective Organic Coatings by Electrochemical Impedance Spectroscopy (교류임피던스법에 의한 유기도막의 방식성 평가)

  • 박진환;이근대;전호환
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.88-93
    • /
    • 2004
  • Electrochemical impedance spectroscopy was used to evaluate the anticorrosive properties of resin(alkyd, epoxy, urethane) and pigment(hydroxy apatite(HAp), zinc potassium chromate(ZPC). red lead(RL)). The corrosion behavior of coatings applied on steel has been investigated during exposure to 0.5M-NaCl The anticorrosive performances of resins were found to depend on their chemical nature and decreased in the order of urethane > epoxy > alkyd resin coating. Hydroxy apatite and zinc potassium chromate pigment which have property to passivate the substrate showed relatively high anticorrosive performance.

Syntheses of Novel Sol-Gel Precursor Containing Anti-corrosive Functional Group and Their Uses in Organic-Inorganic Hybrid Coatings (내부식성이 우수한 졸-젤 전구체의 합성 및 이를 함유하는 유무기 하이브리드 코팅재)

  • Han, Mi-Jeong;Mang, Ji-Young;Seo, Ji-Yeon
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.405-409
    • /
    • 2010
  • New sol-gel precursors having the ability to protect iron against corrosion were synthesized and used to prepare organic-inorganic hybrid coatings based on epoxy. Bisphenol A epoxy was modified with 3-isocyanatopropyltriethoxysilane to improve the compatibility, and water and HCl were used as catalysts for sol-gel process. Various coating formulations were prepared depending on the type of sol-gel precursors and the amount of each ingredient, and cast on iron substrates by dip-coating and thermally cured. Corrosion protection properties of coated iron were studied by a salt spray test and electrochemical impedance spectroscopy under 0.1 M NaCl electrolyte. Hybrid coatings containing anticorrosive functional group exhibited excellent corrosion protection on iron, compared to that of typical hybrid coatings. From electrochemical impedance spectroscopy, the hybrid coatings containing anticorrosive functional group could maintaine the initial impedance after 500 h, while the impedance of hybrid coatings without them started to decrease after 24 h.

Evaluation of Corrosion Protection for Epoxy and Urethane Coating by EIS under Various Cyclic Corrosion Tests

  • Hyun, Jonghun;Shon, Minyoung
    • Corrosion Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.95-100
    • /
    • 2011
  • Protective coatings play an important role in the protection of metallic structures against corrosive environment. The main function of anticorrosive coating is to prevent the materials from corrosive agents, such as water, oxygen and ions. In the study, the corrosion protection properties of urethane and epoxy coating systems were evaluated using EIS methods exposed to the corrosion acceleration test such as Norsok M501, Prohesion and hygrothermal cyclic test. AFM analysis of the coating systems was carried out to monitor the change of roughness of coatings. Urethane coating system was more stable than the epoxy coating under given cyclic conditions. Water uptake into the urethane coatings was less than that into the epoxy coating. The urethane coating system showed better corrosion protection than epoxy coating system based on the changes of the impedance modulus at low frequency region with exposure time. Consequently, the corrosion protection properties of the epoxy and urethane coatings was well correspond with their surface roughness changes and water uptakes.

Preparation and application of silica-based coatings for corrosion protection of marine structures (해양구조물용 silica 기반 내해수성 코팅제의 제조 및 응용)

  • Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.137-142
    • /
    • 2021
  • In this study, the development of the room temperature curable silica-based coating compositions for anticorrosive and antifouling performance in marine environments was carried out. The marine (plant) structures with many exposed parts are operated in harsh marine environments such as strong ultraviolet rays, extreme temperature differences and salt water corrosion. Organic paints that are easily degraded under these environments and easily eroded by physical stimuli such as waves can not play a role properly. Dense ceramic coatings on marine structures provide careful protections even in saltwater environments due to their high hardness and rust resistance. Therefore, in the case of ceramic coatings, their use and application range in marine structures can be greatly improved due to their functional advantages. In the present study, silica-based coating compositions based on colloidal silica with silane coupling agents, curing salts, and ceramic fillers were developed, and their applications as protective coatings for corrosion protection and fouling prevention in seawater were also studied.

Physical Aging Mechanism of Epoxy Coating by Hygrothermal Cycling Test

  • Kim, Min Hong;Lee, Gun Dae;Park, Jin Hwan
    • Corrosion Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.177-180
    • /
    • 2006
  • The anticorrosive performance of epoxy coating was examined by using the hygrothermal cyclic test and the degradation mechanism of the coating was investigated by using the AC impedance method. The relationship between the results obtained from different tests was studied. It was revealed that the hygrothermal cyclic test can be used as an effective acceleration test for the degradation of organic coating. It was also found in hygrothermal cyclic test that the epoxy coatings have the resistance to stresses at some extent. The degradation of organic coating seems to be caused by the decrease of resistance of coating and the increase of both capacitance and free volume in the organic coating.

Corrosion visualization under organic coating using laser ultrasonic propagation imaging

  • Shi, Anseob;Park, Jinhwan;Lee, Heesoo;Choi, Yunshil;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.301-309
    • /
    • 2022
  • Protective coatings are most widely used anticorrosive structures for steel structures. The corrosion under the coating damages the host material, but this damage is completely hidden. Therefore, a field-applicable under-coating-corrosion visualization method has been desired for a long time. Laser ultrasonic technology has been studied in various fields as an in situ nondestructive inspection method. In this study, a comparative analysis was carried out between a guided-wave ultrasonic propagation imager (UPI) and pulse-echo UPI, which have the potential to be used in the field of under-coating-corrosion management. Both guided-wave UPI and pulse-echo UPI were able to successfully visualize the corrosion. Regarding the field application, the guided-wave UPI performing Q-switch laser scanning and piezoelectric sensing by magnetic attachment exhibited advantages owing to the larger distance and incident angle in the laser measurement than those of the pulse-echo UPI. Regarding the corrosion visualization methods, the combination of adjacent wave subtraction and variable time window amplitude mapping (VTWAM) provided acceptable results for the guided-wave UPI, while VTWAM was sufficient for the pule-echo UPI. In addition, the capability of multiple sensing in a single channel of the guided-wave UPI could improve the field applicability as well as the relatively smaller size of the system. Thus, we propose a guided-wave UPI as a tool for under-coating-corrosion management.