• Title/Summary/Keyword: Antihypertensive angiotensin I-converting enzyme inhibitor

Search Result 6, Processing Time 0.105 seconds

Production and Characterization of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor from Pholiota adiposa

  • Koo Kyo-Chul;Lee Dae-Hyoung;Kim Jae-Ho;Yu Hyung-Eun;Park Jeong-Sik;Lee Jong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.757-763
    • /
    • 2006
  • Angiotensin I-converting enzyme (ACE) inhibitors have generally been very useful to remedy or prevent hypertension. This study describes the extraction and characterization of an ACE inhibitor from the fruiting body of Pholiota adiposa ASI 24012, which can be used as an antihypertensive drug. The maximal ACE inhibitory activity $(IC_{50};0.25mg)$ was obtained when the fruiting body of Pholiota adiposa ASI 24012 was extracted with distilled water at $30^{\circ}C$ for 12 h. After the purification of ACE inhibitor with ultrafiltration, Sephadex G-25 column chromatography, and reverse-phase HPLC, an active fraction with an $IC_{50}$ of 0.044 mg was obtained. The purified ACE inhibitory peptide was a novel pentapeptide, showing very little similarity to other ACE inhibitory peptide sequences. The molecular mass of the purified ACE inhibitor was estimated to be 414 daltons with a sequence of Gly-Glu-Gly-Gly-Pro, and showed a clear antihypertensive effect on spontaneously hypertensive rats (SHR) at a dosage of 1 mg/kg.

Screening New Antihypertensive Angiotensin I-Converting Enzyme Inhibitor -Producing Yeast and Optimization of Production Condition (항고혈압성 안지오텐신 전환효소 저해제를 생산하는 새로운 효모의 선별 및 저해물질 최적 생산조건)

  • Kang, Min-Gu;Kim, Ha-Kun;Yi, Sung-Hun;Lim, Sung-Il;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.194-197
    • /
    • 2011
  • Forty eight strains of yeast were cultured in potato dextorse(PD) broth at $30^{\circ}C$ for 24 hr and centrifuged with 12,000 rpm for 20 min. After concentrated the cultures, antihypertensive angiotensin I-converting enzyme(ACE) inhibitory activities of its concentrates were investigated. Among them, the concentrates from Saccharomyces cerevisiae Y183-3 showed the highest ACE inhibitory activity of 71.8%. The ACE inhibitor from Saccharomyces cerevisiae Y183-3 was maximally produced when Saccharomyces cerevisiae Y183-3 cultured in PD broth at $30^{\circ}C$ for 36 hr.

Characterization of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor from Recombinant E. coli (재조합 대장균으로부터 항고혈압 Angiotensin I-Converting Enzyme 저해제의 특성연구)

  • Kim, Jae-Ho;Jeong, Seung-Chan;Lee, Dae-Hyong;Lee, Jong-Soo
    • The Journal of Natural Sciences
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 2005
  • The angiotensin I-converting enzyme (ACE) inhibitor has anti-hypertensive effects and has long been used as prevention or remedy of hypertension. This study were carried out to produce and purify a new ACE inhibitor from recombinant E. coli and further elucidate its structure-function relationship. Recombinant pGEX-4T-3 containing ACE inhibitory peptide gene of Saccharomyces cerevisiae was transformed into E. coli BL21(DE3). Glutathione-S transferase (GST) fusion protein from E. Coli BL21(DE3) harboring the recombination pGEX-4T-3 was obtained and the ACE inhibitory peptide was purified with Sephadex G-25 column chromatography. The purified ACE inhibitory peptide was a novel decapeptide with sequence Tyr-Asp-Gly-Gly-Val-Phe -Arg-Val-Tyr-Thr which shows very low similarity to the other ACE inhibitory peptide sequence. The purified ACE inhibitor competitively inhibited ACE.

  • PDF

Production of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor from Malassezia pachydermatis G-14

  • Jeong, Seung-Chan;Kim, Jae-Ho;Kim, Na-Mi;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.33 no.3
    • /
    • pp.142-146
    • /
    • 2005
  • To produce a novel antihypertensive angiotensin I-converting enzyme (ACE) inhibitor from yeast, a yeast isolate, designated G-14 showing the highest ACE inhibitory activity was obtained and identified as Malassezia pachydermatis based on morphological, biochemical and cultural characteristics. The maximal extracellular ACE inhibitor production was obtained from M. pachydermatis G-14 when the strain was cultured in YEPD medium containing 0.5% yeast extract, 3.0% peptone and 2.0% glucose at $30^{\circ}C$ for 24 h and the final ACE inhibitory activity was 48.9% under the above condition.

Production of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor-Enriched Edible Yeast Using Gugija (Lycium chinesis Mill)

  • Kim, Ran;Jang, Jeong-Hoon;Park, Won-Jong;Kim, Ha-Kun;Kwak, Hahn-Shik;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.38 no.3
    • /
    • pp.206-209
    • /
    • 2010
  • To produce bioactive compound enriched yeast using medicinal Gugiga (Lycium chinensis Mill), several edible Saccharomyces species were cultured in Gugija extracts added yeast extract, peptone and dextrose medium (GE - YEPD medium) at $30^{\circ}C$ for 24 hr, and their growth were determined. Growth of Saccharomyces cerevisiae K-7 and Sacchromyces cerevisiae ACTC 7904 were better than those of the other yeasts. Two yeasts were selected and then determined their some physiological functionalities after cultivated the yeasts in the GE - YEPD medium and compared those grown on YEPD medium. Antihypertensive angiotensin I-converting enzyme (ACE) inhibitory activity of S. cerevisiae K-7 grown on GE - YEPD medium was about 20% higher than that grown on YEPD medium. Superoxide dismutase-like activity of S. cerevisiae ACTC 7904 was also about 12% more high. However, the other physiological functionalities were almost same or lower. Optimal addition concentration of Gugija extract was 10%, and maximally growth and ACE inhibitory activity of S. cerevisiae K-7 were shown when the strain was cultured in 10% Gugija extracts containing YEPD medium at $30^{\circ}C$ for 12 hr.

Characterization of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor from Saccharomyces cerevisiae

  • KIM, JAE-HO;LEE, DAE-HYOUNG;JEONG, SEOUNG-CHAN;CHUNG, KUN-SUB;LEE, JONG-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1318-1323
    • /
    • 2004
  • This study describes the purification and characterization of a novel antihypertensive angiotensin 1­converting enzyme (ACE) inhibitory peptide from Saccharomyces cerevisiae. Maximal production of the ACE inhibitor from Saccharomyces cerevisiae was obtained from 24 h of cultivation at $30^{\circ}C$ and its ACE inhibitory activity was increased by about 1.5 times after treatment of the cell-free extract with pepsin. After the purification of ACE inhibitory peptides with ultrafiltration, Sephadex G-25 column chromatography, and reverse-phase HPLC, an active fraction with an $IC_{50}$ of 0.07 mg and $3.5\%$ yield was obtained. The purified peptide was a novel decapeptide, showing very low similarity to other ACE inhibitory peptide sequences, and its amino acid sequence was Tyr-Asp-Gly-Gly-Val-Phe-Arg-Val-Tyr-Thr. The purified inhibitor competitively inhibited ACE and also showed a clear antihypertensive effect in spontaneously hypertensive rats (SHR) at a dosage of 1 mg/kg body weight.