• Title/Summary/Keyword: Antimicrobial substitutes

Search Result 8, Processing Time 0.024 seconds

A Study of Antioxidant and Antibacterial Activates of the Extraction of Perscaria hydropiper L.

  • Oh, Sun-Min;Oh, Kwang-Yul;Ahn, Sun-Choung
    • Culinary science and hospitality research
    • /
    • v.22 no.6
    • /
    • pp.14-23
    • /
    • 2016
  • This purpose of this study is to examine the antioxidant and antimicrobial activities of Persicaria hydropiper L. extract in 70% ethanol and in water, a medicinal herb, as an effort to examine the potential of medicinal herbs for development of antioxidants and natural preservative substitutes. The total poly-phenol content in the 70% ethanol extract and in the water extract were 19.88 mg/g and 7.46 mg/g, respectively. The DPPH radical scavenging activity was 90.99% and 64.98% in the 70% ethanol extract and water extract, in which 70% ethanol extract showed a higher activity. The antioxidant effect of Persicaria hydropiper L. extract appears to be very good and due to its excellent growth inhibitory effect on food-poisoning-causing microorganisms in the food, it is thought to be utilized as a potential natural preservative substitute in many areas.

Antimicrobial effects of natural extracts on bacteria isolated from the uterus of Hanwoo (Korean native cattle) (한우의 자궁 내 분리 세균에 대한 천연물질 항균효과)

  • Park, Bokyoung;Kim, Kiju;Cho, Youngjae;Park, Soyeon;Lee, Jaehun;Jung, Bae-Dong;Kwon, Yong-Soo;Park, Joung-Jun;Hahn, Tae-Wook
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.3
    • /
    • pp.159-164
    • /
    • 2014
  • Bacterial infection of the uterus in Hanwoo can kill embryos. Therefore, many antibiotics have been used to treat this infection in the uterus of repeat breeders. Incorrect use of antibiotics has led to resistance in bacteria. Natural compounds have used as substitutes for antibiotics because they are safe and have very mild side effects. This study was conducted to examine the antimicrobial effects of five extracts from medicinal plants including Humulus japonicas (Hj), Phelledendron amurense (Pa), Viola mandshurica (Vm), Carthamus tinctorius (Ct), and Chelidoni herba (Ch) on bacteria isolated from the uterus of Hanwoo using the paper disc diffusion method. Hj and Pa extracts had potent antimicrobial effects against Staphylococcus lentus, Streptococcus infantarius subsp. coli, and Bacillus pumilus. Pa had the greatest antimicrobial effect among the five medicinal plants and was effective against 19 types of bacteria from bovine uterus. Compared to Pa, Hj showed weaker antimicrobial effects on all the bacteria tested except Pseudomonas aeruginosa. Vm, Ct, and Ch also showed weak antimicrobial effects on the tested bacteria. The results obtained suggest that Hj and Pa are natural compounds suitable for treating bacterial infection in repeat breeders and improving conception rates of Hanwoo.

Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles

  • Nam, Ki Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.217-223
    • /
    • 2017
  • PURPOSE. This study investigated the effects of silver nanoparticle (SN) loading into hydraulic calcium silicate-based Portland cement on its mechanical, antibacterial behavior and biocompatibility as a novel dental bone substitute. MATERIALS AND METHODS. Chemically reduced colloidal SN were combined with Portland cement (PC) by the concentrations of 0 (control), 1.0, 3.0, and 5.0 wt%. The physico-mechanical properties of silver-Portland cement nanocomposites (SPNC) were investigated through X-ray diffraction (XRD), setting time, compressive strength, solubility, and silver ion elution. Antimicrobial properties of SPNC were tested by agar diffusion against Streptococcus mutans and Streptococcus sobrinus. Cytotoxic evaluation for human gingival fibroblast (HGF) was performed by MTS assay. RESULTS. XRD certified that SN was successfully impregnated in PC. SPNC at above 3.0 wt% significantly reduced both initial and final setting times compared to control PC. No statistical differences of the compressive strength values were detected after SN loadings, and solubility rates of SPNC were below 3.0%, which are acceptable by ADA guidelines. Ag ion elutions from SPNC were confirmed with dose-dependence on the concentrations of SN added. SPNC of 5.0 wt% inhibited the growth of Streptococci, whereas no antimicrobial activity was shown in control PC. SPNC revealed no cytotoxic effects to HGF following ISO 10993 (cell viability > 70%). CONCLUSION. Addition of SN promoted the antibacterial activity and favored the bio-mechanical properties of PC; thus, SPNC could be a candidate for the futuristic dental biomaterial. For clinical warrant, further studies including the inhibitory mechanism, in vivo and long-term researches are still required.

Effects of Foreign Plant Extracts on Cell Growth and Biofilm Formation of Streptococcus Mutans (해외 자생식물추출물이 Streptococcus mutans의 세포 성장 및 생물막 형성에 미치는 영향)

  • Moon, Kyung Hoon;Lee, Yun-Chae;Kim, Jeong Nam
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.712-723
    • /
    • 2019
  • Chemically synthesized compounds are widely used in oral hygiene products. However, excessively long-term use of these chemicals can cause undesirable side effects such as bacterial tolerance, allergy, and tooth discoloration. To solve these issues, significant effort is put into the search for natural antibacterial agents. The aim of this study was to assess the extracts of foreign native plants that inhibit the growth and biofilm formation of Streptococcus mutans. Among the 300 foreign plant extracts used in this study, Chesneya nubigena (D. Don) Ali extract had the highest antimicrobial activity relatively against S. mutans with a clear zone of 9 mm when compared to others. This plant extract also showed anti-biofilm activity and bacteriostatic effect (minimal bactericidal concentration [MBC], 1.5 mg/ml). In addition, the plant extracts of 19 species decreased the ability of S. mutans to form biofilm at least a 6-fold in proportion to the tested concentrations. Of particular note, C. nubigena (D. Don) Ali extract was found to inhibit biofilm formation at the lowest concentration tested effectively. Therefore, our results reveal that C. nubigena (D. Don) Ali extract is a potential candidate for the development of antimicrobial substitutes, which might be effective for caries control as well, as demonstrated by its inhibitory effect on the persistence and pathogenesis of S. mutans.

Antimicrobial surfaces for craniofacial implants: state of the art

  • Actis, Lisa;Gaviria, Laura;Guda, Teja;Ong, Joo L.
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.2
    • /
    • pp.43-54
    • /
    • 2013
  • In an attempt to regain function and aesthetics in the craniofacial region, different biomaterials, including titanium, hydroxyapatite, biodegradable polymers and composites, have been widely used as a result of the loss of craniofacial bone. Although these materials presented favorable success rates, osseointegration and antibacterial properties are often hard to achieve. Although bone-implant interactions are highly dependent on the implant's surface characteristics, infections following traumatic craniofacial injuries are common. As such, poor osseointegration and infections are two of the many causes of implant failure. Further, as increasingly complex dental repairs are attempted, the likelihood of infection in these implants has also been on the rise. For these reasons, the treatment of craniofacial bone defects and dental repairs for long-term success remains a challenge. Various approaches to reduce the rate of infection and improve osseointegration have been investigated. Furthermore, recent and planned tissue engineering developments are aimed at improving the implants' physical and biological properties by improving their surfaces in order to develop craniofacial bone substitutes that will restore, maintain and improve tissue function. In this review, the commonly used biomaterials for craniofacial bone restoration and dental repair, as well as surface modification techniques, antibacterial surfaces and coatings are discussed.

Influences of Animal Mucins on Peroxidase Activity in Solution and on the Surface of Hydroxyapatite (동물성 Mucin이 용액상태와 Hydroxyapatite표면에서 Peroxidase 활성에 미치는 영향에 관한 연구)

  • Lee, Sang-Goo;Jeon, Eun-Hyoung;Kho, Hong-Seop
    • Journal of Oral Medicine and Pain
    • /
    • v.33 no.3
    • /
    • pp.229-240
    • /
    • 2008
  • Animal mucins have structural characteristics similar to human salivary mucins. Animal mucins have been regarded as suitable substances for saliva substitutes. Since animal mucin molecules in saliva substitutes and host-derived antimicrobial salivary molecules exist simultaneously in whole saliva and the pellicles of patients with dry mouth, interactions may occur between these molecules. The purpose of this study was to investigate the influence of animal mucins on peroxidase activity in solution and on the surface of hydroxyapatite(HA) surfaces. The effects of animal mucins on peroxidase activity were examined by incubating porcine gastric mucin(PGM) or bovine submaxillary mucin (BSM) with either bovine lactoperoxidase(bLPO) or saliva samples. For solid-phase assays, immobilized animal mucins or peroxidase on three different HA surfaces(HA beads, HA disc, and bovine tooth) were used. Peroxidase activity was determined with an NbsSCN assay. The obtained results were as follows: 1. PGM enhanced the enzymatic activity of bLPO in solution phase. PGM did not affect the enzymatic activity of peroxidase in saliva sample(POS). 2. BSM did not affect the enzymatic activities of both bLPO and POS in solution phase. 3. HA-adsorbed PGM increased subsequent bLPO adsorption in all three HA phases. The activity of POS was increased on both the HA beads and bovine tooth. 4. The peroxidase activities on the HA beads and disc were increased when the HA surfaces were exposed to a mixture of bLPO and PGM. 5. The binding affinity of bLPO to PGM was greater than that of bLPO to BSM. Collectively, our results suggest that animal mucins affects the enzymatic activity of peroxidase on the HA surfaces as well as in solution. Saliva substitutes containing animal mucins may affect the function of antimicrobial components in natural saliva and saliva substitutes.

Probiotics-Mediated Bioconversion and Periodontitis

  • Lee, Yewon;Yoon, Yohan;Choi, Kyoung-hee
    • Food Science of Animal Resources
    • /
    • v.41 no.6
    • /
    • pp.905-922
    • /
    • 2021
  • Novel bioactive metabolites have been developed through a bioconversion of dairy products or other foods using probiotics isolated from dairy products or other fermented foods. These probiotics-mediated bioconversion (PMB) metabolites show antioxidant, anti-inflammatory, antimicrobial, epithelial barrier, and anticancer activities. In addition, the effect of PMB metabolites in periodontitis is recently reported in several studies. Periodontitis is a chronic inflammatory disease caused by infections, and the tooth support tissue is destroyed. Common treatments for periodontitis include scaling and root planning with systemic antibiotics. However, the overuse of antibiotics has led to the emergence of drug-resistant microorganisms and disturbs the beneficial bacteria, including lactobacilli in the oral cavity. For this reason, PMB metabolites, such as fermented milk, have been suggested as substitutes for antibiotics to reduce periodontitis. This paper reviews the recent studies on the correlation between periodontitis and PMB metabolites and classifies the efficacy of major PMB metabolites for periodontitis. The review suggests that PMB is effective for periodontitis, and further studies are needed to confirm the therapeutic effect of PMB metabolites on periodontitis.

Viscosity and Wettability of Hyaluronic Acid according to Antimicrobial Supplementation, Ionic Strength, and pH

  • Kho, Hong-Seop;Chang, Ji-Youn;Kim, Yoon-Young;Park, Moon-Soo
    • Journal of Oral Medicine and Pain
    • /
    • v.39 no.3
    • /
    • pp.90-95
    • /
    • 2014
  • Purpose: To investigate viscosity and wettability of hyaluronic acid (HA) solutions according to supplementation of lysozyme and/or peroxidase, and different ionic strength and pH conditions. Methods: Solutions containing HA were prepared using distilled deionized water (DDW) and simulated salivary buffer (SSB) in different conditions. Different concentrations of hen egg-white lysozyme and bovine lactoperoxidase was added into HA solutions. HA solutions with antimicrobials in different ionic strength and pH conditions were prepared. Viscosity was measured using cone-and-plate digital viscometer at six different shear rates and wettability on acrylic resin and Co-Cr alloy was determined by contact angle. Results: The viscosity values of HA dissolved in DDW were decreased in order of HA, HA containing lysozyme, HA containing peroxidase, and HA containing lysozyme and peroxidase. The viscosity values for HA in DDW were decreased as the concentration of lysozyme and/or peroxidase increased. However, the viscosity values for HA in SSB showed no significant changes according to the concentration of lysozyme and/or peroxidase. The viscosity values of HA solutions were inversely proportional to ionic strength and pH. The contact angle of HA solutions showed no significant differences according to tested surface materials, addition of lysozyme and/or peroxidase, and different ionic strength and pH conditions. Contact angles on acrylic resin by HA solutions in all tested conditions were much higher than those by human saliva. Conclusions: The rheological properties of HA supplemented with lysozyme and/or peroxidase in different ionic strength and pH conditions were objectively confirmed, indicating the possibility of HA with lysozyme and/or peroxidase as main components in the development of effective saliva substitutes.