• Title/Summary/Keyword: Antioxidant responsive element

Search Result 9, Processing Time 0.026 seconds

Nrf2 and Keap1 Regulation of Antioxidant and Phase II Enzyme Genes

  • Yamamoto, M.
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.24-42
    • /
    • 2002
  • Antioxidant responsive element (ARE) mediates the transcriptional activation of the genes encoding phase II drug metabolizing enzymes and antioxidative stress genes. The ARE consensus sequence shows high similarity to NF-E2 binding sequence, a cisacting erythroid gene regulatory element.(omitted)

  • PDF

An Important Role of Nrf2-ARE Pathway in the Cellular Defense Mechanism

  • Lee, Jong-Min;Johnson, Jeffrey A.
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.139-143
    • /
    • 2004
  • The antioxidant responsive element (ARE) is a cis-acting regulatory element of genes encoding phase II detoxification enzymes and antioxidant proteins, such as NAD(P)H: quinone oxidoreductase 1, glutathione S-transferases, and glutamate-cysteine ligase. Interestingly, it has been reported that Nrf2 (NF-E2-related factor 2) regulates a wide array of ARE-driven genes in various cell types. Nrf2 is a basic leucine zipper transcription factor, which was originally identified as a binding protein of locus control region of ss-globin gene. The DNA binding sequence of Nrf2 and ARE sequence are very similar, and many studies demonstrated that Nrf2 binds to the ARE sites leading to up-regulation of downstream genes. The function of Nrf2 and its downstream target genes suggests that the Nrf2-ARE pathway is important in the cellular antioxidant defense system. In support of this, many studies showed a critical role of Nrf2 in cellular protection and anti-carcinogenicity, implying that the Nrf2-ARE pathway may serve as a therapeutic target for neurodegenerative diseases and cancers, in which oxidative stress is closely implicated.

Nrf2 Knockout Mice that Lack Control of Drug Metabolizing and Antioxidant Enzyme Genes - Animals Highly Sensitive to Xenobiotic Toxicity

  • Enomoto, Akiko;Itoh, Ken;Harada, Takanori;Yamamoto, Masayuki
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.299-304
    • /
    • 2001
  • Xenobiotics and their reactive intermediates bind to cellular macromolecules and/or generate oxidative stress. which provoke deleterious effects on the cell function. Induction of xenobiotic-biotrans-forming enzymes and antioxidant molecules is an important defense mechanism against such insults. A group of genes involved in the defense mechanism. e.g. genes encoding glutathione S-transferases. NAD(P)H: quinone oxidoreductase, UDP-glucuronosyltransferase (UDP-GT) and ${\gamma}$-glutamylcysteine synthetase (GGCS). have a common regulatory sequence, Antioxidant or Electrophile Responsive Element (ARE/EpRE). Recently. Nrf2. discovered as a homologue of erythroid transcription factor p45 NF-E2, was shown to bind ARE/EpRE and induce the expression of these defense genes. Mice that lack Nrf2 show low basal levels of expression and/or impaired induction of these genes. which makes the animals highly sensitive to xenobiotic toxicity. Indeed. we show here that nrf2-deficient mice had a higher mortality than did the wild-type mice when exposed to acetaminophen (APAP). Detailed analyses of APAP hepatotoxicity in the nrf2 knockout mice indicate that a large amount of reactive APAP metabolites was generated in the livers due to the impaired basal expression of two detoxifying enzyme genes, UDP-GT (Ugt1a6) and GGCS. while the cytochrome P450 content was unchanged. Thus. the studies using the nrf2 knockout mice clearly demonstrate significance of the expression of Nrf2-regulated enzymes in protection against xenobiotic toxicity.

  • PDF

Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain

  • Itoh, Ken;Wakabayashi, Nobunao;Katoh, Yasutake;Ishii, Tetsuro;Igarashi, Kazuhiko;Engel, James Douglas;Yamamoto, Masayuki
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2002.05a
    • /
    • pp.25-35
    • /
    • 2002
  • Transcription factor Nrf2 is essential for the antioxidant responsive element (ARE)-mediated induction of phase II detoxifying and oxidative stress enzyme genes. Detailed analysis of differential Nrf2 activity displayed in transfected cell lines ultimately led to the identification of a new protein, which we named Keap1, that suppresses Nrf2 transcriptional activity by specific binding to its evolutionarily conserved amino-terminal regulatory domain. The closest homolog of Keap1 is a Drosophila actin-binding protein called Kelch, implying that Keap1 might be a Nrf2 cytoplasmic effector. We then showed that electrophilic agents antagonize Keap1 inhibition of Nrf2 activity in vivo, allowing Nrf2 to traverse from the cytoplasm to the nucleus and potentiate the ARE response. We postulate that Keap1 and Nrf2 constitute a crucial cellular sensor for oxidative stress, and together mediate a key step in the signaling pathway that leads to transcriptional activation by this novel Nrf2 nuclear shuttling mechanism. The activation of Nrf2 leads in turn to the induction of phase II enzyme and antioxidative stress genes in response to electrophiles and reactive oxygen species.

  • PDF

Effects of mushroom waster medium and stalk residues on the growth performance and oxidative status in broilers

  • Hsieh, Y.C.;Lin, W.C.;Chuang, W.Y.;Chen, M.H.;Chang, S.C.;Lee, T.T.
    • Animal Bioscience
    • /
    • v.34 no.2
    • /
    • pp.265-275
    • /
    • 2021
  • Objective: The study developed mushroom stalk residues as feed additives in the broiler diet for improving the growth performance and immunity of broilers as well as to increase the value of mushroom stalk residues. Methods: In total, 300 ROSS 308 broilers were randomly allocated into fifteen pens with five dietary treatments: i) control, basal diet; ii) CMWM, supplemented with 1% Cordyceps militaris waster medium (CM); iii) CMPE, supplemented with 0.5% CM+0.5% Pleurotus eryngii stalk residue (PE); iv) CMPS, supplemented with 0.5% CM+0.5% Pleurotus sajorcaju stalk residue (PS); v) CMFV, supplemented with 0.5% CM+0.5% Fammulina velutipes stalk residue (FV). Results: The chemical analysis results showed that CM extracts, PE extracts, PS extracts, and FV extracts contain functional components such as polysaccharides and phenols and have both 2, 2-diphenyl-1-picryl-hydrazyl-hydrate scavenging and Ferrous scavenging capacities. The group CMWM saw increased body weight gain and feed conversion rate and the promotion of jejunum villus growth, but there is no significant difference in the intestinal bacteria phase. Antioxidant genes in the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)- antioxidant responsive element pathway among the groups are significantly higher than that of the control group, especially in group CMWM. Conclusion: The mushroom stalk residues have antioxidant functional components, can improve the intestinal health and body weight gain of chickens, and can activate the antioxidant pathway of Nrf2 to increase the heme oxygenase-1 expression. The treatment with 1% CM was the most promising as a feed additive.

Antioxidant Effects of PanaX ginseng in Mouse GC-1 Spennatogonia Cells (인삼(人蔘)이 생쥐의 남성 생식세포 GC-1 spermatogonia의 항산화에 미치는 영향)

  • Shim, Kyung-Jun;Kang, Ji-Ung;Choi, Bong-Jae;Park, Soo-yeon;Chang, Mun-Seog;Park, Seong-Kyu
    • The Korea Journal of Herbology
    • /
    • v.24 no.2
    • /
    • pp.93-98
    • /
    • 2009
  • Objectives : Previously we reported that the roots of Panax ginseng C.A. Meyer (Araliaceae) increased sperm count and motility. also induced spermatogenesis via cAMP-responsive element modulator(CREM) activation in rat testes. In this study, for the first step of spermatogenesis in germ cell lines, the antioxidant activity of Panax ginseng were examined in mouse GC-1 spermatogonia cells. Methods : The extract was studied on diphenyl-picryl-hydrazyl (DPPH) radical scavenging activity, GC-1 cell viability by a modified MIT assay. H202-induced cytotoxicity by MIT assay and lipid peroxidation by malondialdehyde (MDA) formation. respectively. Results: The results showed that the extract scavenged DPPH radical with the IC50 being 0.631 mg/mi. The extract at concentrations of 5, and 10, 50, 100, 250 ${\mu}$g/mi increased GC-1 cell viability significantly(p < 0.05, and p < O.O1). Hydrogen peroxide-induced cytotoxicity (73.8%, p < O.O1) was blocked by the extract at concentrations of 50, and 100, 250, 500 ${\mu}$g/ml significantly (p < 0.05, and p < O.O1). The extract at concentrations of 10. and 50 ${\mu}$g/ml decreased the MDA formation on hydrogen peroxide-induced lipid peroxidation. Conclusions : In conclusion, the extract of Panax ginseng has potent antioxidant activity and increases the survival rate of GC-1 spg cells against $H_20_2$-induced cytotoxicity.

Heterologous expression of the Arabidopsis DREB1A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants

  • Li, Xue;Cheng, Xiaoxia;Liu, Jun;Zeng, Huiming;Han, Liebao;Tang, Wei
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • The dehydration-responsive element binding proteins (DREB1)/C-repeat (CRT) binding factors (CBF) function as transcription factors and play an important role in agricultural biotechnology and molecular biology studies of drought and freezing stress tolerance. We generated transgenic Lolium perenne plants containing the PCR-cloned Arabidopsis DREB1A/CBF3 gene (AtDREB1A/CBF3) to study the function of this gene construct in drought and freezing tolerance in a species of turfgrass. Compared to the control, AtDREB1A/CBF3 transgenic L. perenne plants showed enhanced drought and freezing stress tolerance. The activities of the enzymes superoxide dismutase (SOD) and peroxidase (POD) were higher in transgenic plants than in the non-transgenic plant control. These results demonstrate that the expression of the AtDREB1A/CBF3 gene in transgenic L. perenne plants enhanced drought and freezing tolerance and that the increased stress tolerance was associated with the increased activities of antioxidant enzymes. These results are relevant to stress biology and biotechnology studies of turfgrass.

Induction of Microsomal Epoxide Hydrolase, rGSTA2, rGSTA3/5, and rGSTM1 by Disulfiram, but not by Diethyldithiocarbamate, a Reduced Form of Disulfiram

  • Kim, Sang-Geon;Kim, Hye-Jung
    • Toxicological Research
    • /
    • v.13 no.4
    • /
    • pp.339-347
    • /
    • 1997
  • Disulfiram (DSF) and diethyldithiocarbamate (DDC), a reduced form of DSF, protect the liver against toxicant-induced injury through inhibition of cytochrome P450 2E1. The effect of DSF and DDC on the levels of major hepatic microsomal epoxide hydrolase (mEH) and glutathione S-transferase (GST) expression was comparatively studied, given the view that these enzymes are involved in terminal detoxification events for high energy intermediates of xenobiotics. Treatment of rats with a single dose of DSF (20-200 mg/kg, po) resulted in 2- to 15-fold increases in the mEH mRNA level at 24 hr with the ED$_{50}$ value being noted as 60 mg/kg. The mEH mRNA level was elevated ~15-fold at 24 hr after treatment at the dose of 100 mg/kg, whereas the hepatic mRNA level was rather decreased from the maximum at the dose of 200 mg/kg, indicating that DSF might cause cytotoxicity at the dose. In contrast to the effect of DSF, DDC only minimally elevated the mEH mRNA level at the doses employed. DSF moderately increased the major GST mRNA levels in the liver as a function of dose, resulting in rGSTA2, rGSTA3/5 or rGSTM1 mRNA levels being elevated 3- to 4-fold at 24 hr post-treatment, whereas the rGSTM2 mRNA level was not altered. DDC, however, failed to stimulate the mRNA levels for major GST subunits, indicating that the reduced form of DSF was ineffective in stimulating the GST the expression. The effect of other organosulfides including aldrithiol, 2, 2'-dithiobis(benzothiazole) (DTB), tetramethylthiouram disulfide (TMTD) and allyl disulfide (ADS) on the hepatic mEH and GST mRNA expression was assessed in rats in order to further confirm the increase in the gene expression by other disulfides. Treatment of rats with aldrithiol (100 mg/kg, po) resulted in a 16-fold increase in the mEH mRNA level at 24 hr post-treatment. DTB, TMTD and ADS also caused 5-, 9- and 12-fold increases in the rnRNA level, respectively, as compared to control. Thus, all of the disulfides examined were active in stimulating the mEH gene in the liver. The organosulfides significantly increased the rGSTA2, rGSTA3, rGSTA5 and rGSTM1 mRNA levels at 24 hr after administration. In particular, aldrithiol was very efficient in stimulating the rGSTA and rGSTM genes among the disulfides examined. These results provide evidence that DSF and other sulfides effectively stimulate the mEH and major GST gene expression at early times in the liver and that DDC, a reduced form of DSF, was ineffective in stimulating the expression of the genes, supporting the conclusion that reduced form(s) of organosulfur compound(s) might be less effective in inducing the mEH and GST genes through the antioxidant responsive element(s).

  • PDF

Protective effects of Korean Red Ginseng against sub-acute immobilization stress-induced testicular damage in experimental rats

  • Lee, Sang-Ho;Choi, Kyung-Hwa;Cha, Kyu-Min;Hwang, Seock-Yeon;Park, Un-Kyu;Jeong, Min-Sik;Hong, Jae-Yup;Han, Chang-Kyun;In, Gyo;Kopalli, Spandana Rajendra;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.125-134
    • /
    • 2019
  • Background: Excessive stress causes varied physiological and psychological disorders including male reproductive problems. Here, we attempted to investigate the protective effects of Korean Red Ginseng (Panax ginseng Meyer; KRG) against sub-acute immobilization stress-induced testicular damage in experimental rats. Methods: Male rats (age, 4 wk; weight, 60-70 g) were divided into four groups (n = 8 in each group): normal control group, immobilization control group, immobilization group treated with 100 mg/kg of KRG daily, and immobilization group treated with 200 mg/kg of KRG daily. Normal control and immobilization control groups received vehicle only. KRG (100 mg/kg and 200 mg/kg) was mixed in the standard diet powder and fed daily for 6 mo. Parameters such as organ weight, blood chemistry, sperm kinematic values, and expression levels of testicular-related molecules were measured using commercially available kits, Western blotting, and reverse transcription polymerase chain reaction. Results: Data revealed that KRG restored the altered testis and epididymis weight in immobilization stress-induced rats significantly (p < 0.05). Further, KRG ameliorated the altered blood chemistry and sperm kinematic values when compared with the immobilization control group and attenuated the altered expression levels of spermatogenesis-related proteins (nectin-2, cAMP responsive element binding protein 1, and inhibin-${\alpha}$), sex hormone receptors (androgen receptor, luteinizing hormone receptor, and follicle-stimulating hormone receptor), and antioxidant-related enzymes (glutathione S-transferase m5, peroxiredoxin-4, and glutathione peroxidase 4) significantly in the testes of immobilization stress-induced rats. Conclusion: KRG protected immobilization stress-induced testicular damage and fertility factors in rats, thereby indicating its potential in the treatment of stress-related male sterility.