• Title/Summary/Keyword: Antrodia cinnamomea

Search Result 6, Processing Time 0.018 seconds

Optimization of Protoplast Preparation and Regeneration of a Medicinal Fungus Antrodia cinnamomea

  • Wu, Jyun-De;Chou, Jyh-Ching
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.483-493
    • /
    • 2019
  • Antrodia cinnamomea is a unique medicinal fungus in Taiwan. It has been found rich in some pharmacologically active compounds for anti-cancer, hangover, and immune regulation etc. With the in-depth study of these components, it would be interesting and important to establish a molecular system for basic studies of A. cinnamomea. Thus, we would like to set up a foundation for this purpose by studying the A. cinnamomea protoplast preparation and regeneration. Firstly, we studied the optimization method of protoplast preparation of A. cinnamomea, and found various factors that may affect the yield during protoplast preparation, such as mycelial ages, pH values, and osmotic stabilizers. Secondly, in the regeneration of protoplasts, we explored the effects of various conditions on the regeneration of protoplasts, including different media and osmotic pressure. In addition, we found that citrate buffer with pH value around 3 dramatically increased the regeneration of protoplasts of A. cinnamomea, and provided a set of regeneration methodology for A. cinnamomea.

Transcriptome Analysis of Antrodia cinnamomea Mycelia from Different Wood Substrates

  • Jiao-Jiao Chen;Zhang Zhang;Yi Wang;Xiao-Long Yuan;Juan Wang;Yu-Ming Yang;Yuan Zheng
    • Mycobiology
    • /
    • v.51 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • Antrodia cinnamomea, an edible and medicinal fungus with significant economic value and application prospects, is rich in terpenoids, benzenoids, lignans, polysaccharides, and benzoquinone, succinic and maleic derivatives. In this study, the transcriptome of A. cinnamomea cultured on the wood substrates of Cinnamomum glanduliferum (YZM), C. camphora (XZM), and C. kanehirae (NZM) was sequenced using the high-throughput sequencing technology Illumina HiSeq 2000, and the data were assembled by de novo strategy to obtain 78,729 Unigenes with an N50 of 4,463 bp. Compared with public databases, about 11,435, 6,947, and 5,994 Unigenes were annotated to the Non-Redundant (NR), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genome (KEGG), respectively. The comprehensive analysis of the mycelium terpene biosynthesis-related genes in A. cinnamomea revealed that the expression of acetyl-CoA acetyltransferase (AACT), acyl-CoA dehydrogenase (MCAD), 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), mevalonate pyrophosphate decarboxylase (MVD), and isopentenyl diphosphate isomerase (IDI) was significantly higher on NZM compared to the other two wood substrates. Similarly, the expression of geranylgeranyltransferase (GGT) was significantly higher on YZM compared to NZM and XZM, and the expression of farnesyl transferase (FTase) was significantly higher on XZM. Furthermore, the expressions of 2,3-oxidized squalene cyclase (OCS), squalene synthase (SQS), and squalene epoxidase (SE) were significantly higher on NZM. Overall, this study provides a potential approach to explore the molecular regulation mechanism of terpenoid biosynthesis in A. cinnamomea.

Effects of dietary Antrodia cinnamomea fermented product supplementation on antioxidation, anti-inflammation, and lipid metabolism in broiler chickens

  • Lee, M.T.;Lin, W.C.;Lin, L.J.;Wang, S.Y.;Chang, S.C.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1113-1125
    • /
    • 2020
  • Objective: This study was investigated the effects of dietary supplementation of Antrodia cinnamomea fermented product on modulation of antioxidation, anti-inflammation, and lipid metabolism in broilers. Methods: Functional compounds and in vitro antioxidant capacity were detected in wheat bran (WB) solid-state fermented by Antrodia cinnamomea for 16 days (FAC). In animal experiment, 400 d-old broiler chickens were allotted into 5 groups fed control diet, and control diet replaced with 5% WB, 10% WB, 5% FAC, and 10% FAC respectively. Growth performance, intestinal microflora, serum antioxidant enzymes and fatty acid profiles in pectoral superficial muscle were measured. Results: Pretreatment with hot water extracted fermented product significantly reduced chicken peripheral blood mononuclear cells death induced by lipopolysaccharide and 2,2'-Azobis(2-amidinopropane) dihydrochloride. Birds received 5% and 10% FAC had higher weight gain than WB groups. Cecal coliform and lactic acid bacteria were diminished and increased respectively while diet replaced with FAC. For FAC supplemented groups, superoxide dismutase (SOD) activity increased at 35 days only, with catalase elevated at 21 and 35 day. Regarding serum lipid parameters, 10% FAC replacement significantly reduced triglyceride and low-density lipoprotein level in chickens. For fatty acid composition in pectoral superficial muscle of 35-d-old chickens, 5% and 10% FAC inclusion had birds with significantly lower saturated fatty acids as compared with 10% WB group. Birds on the 5% FAC diet had a higher degree of unsaturation, followed by 10% FAC, control, 5% WB, and 10% WB. Conclusion: In conclusion, desirable intestinal microflora in chickens obtaining FAC may be attributed to the functional metabolites detected in final fermented product. Moreover, antioxidant effects observed in FAC were plausibly exerted in terms of improved antioxidant enzymes activities, increased unsaturated degree of fatty acids in chicken muscle and better weight gain in FAC inclusion groups, indicating that FAC possesses promising favorable mechanisms worthy to be developed.

Effects of Culture Mechanism of Cinnamomum kanehirae and C. camphora on the Expression of Genes Related to Terpene Biosynthesis in Antrodia cinnamomea

  • Zhang, Zhang;Wang, Yi;Yuan, Xiao-Long;Luo, Ya-Na;Luo, Ma-Niya;Zheng, Yuan
    • Mycobiology
    • /
    • v.50 no.2
    • /
    • pp.121-131
    • /
    • 2022
  • The rare edible and medicinal fungus Antrodia cinnamomea has a substantial potential for development. In this study, Illumina HiSeq 2000 was used to sequence its transcriptome. The results were assembled de novo, and 66,589 unigenes with an N50 of 4413 bp were obtained. Compared with public databases, 6,061, 3,257, and 2,807 unigenes were annotated to the Non-Redundant, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes databases, respectively. The genes related to terpene biosynthesis in the mycelia of A. cinnamomea were analyzed, and acetyl CoA synthase (ACS2 and ACS4), hydroxymethylglutaryl CoA reductase (HMGR), farnesyl transferase (FTase), and squalene synthase (SQS) were found to be upregulated in XZJ (twig of C. camphora) and NZJ (twig of C. kanehirae). Moreover, ACS5 and 2,3-oxidized squalene cyclase (OCS) were highly expressed in NZJ, while heme IX farnesyl transferase (IX-FIT) and ACS3 were significantly expressed in XZJ. The differential expression of ACS1, ACS2, HMGR, IX-FIT, SQS, and OCS was confirmed by real-time quantitative reverse transcription PCR. This study provides a new concept for the additional exploration of the molecular regulatory mechanism of terpenoid biosynthesis and data for the biotechnology of terpenoid production.

Effects of dietary Antrodia cinnamomea fermented product supplementation on metabolism pathways of antioxidant, inflammatory, and lipid metabolism pathways-a potential crosstalk

  • Lee, M.T.;Lin, W.C.;Lin, L.J.;Wang, S.Y.;Chang, S.C.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1167-1179
    • /
    • 2020
  • Objective: This study was conducted to fathom the underlying mechanisms of nutrition intervention and redox sensitive transcription factors regulated by Antrodia cinnamomea fermented product (FAC) dietary supplementation in broiler chickens. Methods: Four hundreds d-old broilers (41±0.5 g/bird) assigned to 5 groups were examined after consuming control diet, or control diet replaced with 5% wheat bran (WB), 10% WB, 5% FAC, and 10% FAC. Liver mRNA expression of antioxidant, inflammatory and lipid metabolism pathways were analyzed. Prostaglandin E2 (PGE2) concentration in each group were tested in the chicken peripheral blood mononuclear cells (cPBMCs) of 35-d old broilers to represent the stress level of the chickens. Furthermore, these cells were stimulated with 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) and lipopolysaccharide (LPS) to evaluate the cell stress tolerance by measuring cell viability and oxidative species. Results: Heme oxygenase-1, glutathione S-transferase, glutamate-cysteine ligase, catalytic subunit, and superoxide dismutase, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) that regulates the above antioxidant genes were all up-regulated significantly in FAC groups. Reactive oxygen species modulator protein 1 and NADPH oxygenase 1 were both rather down-regulated in 10% FAC group as comparison with two WB groups. Despite expressing higher level than control group, birds receiving diet containing FAC had significantly lower expression level in nuclear factor-kappa B (NF-κB) and other genes (inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1β, nucleotide-binding domain, leucine-richcontaining family, pyrin domain-containing-3, and cyclooxygenase 2) involving in inflammatory pathways. Additionally, except for 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase that showed relatively higher in both groups, the WB, lipoprotein lipase, Acetyl-CoA carboxylase, fatty acid synthase, fatty acid binding protein, fatty acid desaturase 2 and peroxisome proliferator-activated receptor alpha genes were expressed at higher levels in 10% FAC group. In support of above results, promoted Nrf2 and inhibited NF-κB nuclear translocation in chicken liver were found in FAC containing groups. H2O2 and NO levels induced by LPS and AAPH in cPBMCs were compromised in FAC containing diet. In 35-d-old birds, PGE2 production in cPBMCs was also suppressed by the FAC diet. Conclusion: FAC may promote Nrf2 antioxidant pathway and positively regulate lipid metabolism, both are potential inhibitor of NF-κB inflammatory pathway.

Investigation and utilization of unique natural products from endemic tree species in Taiwan

  • Chu, Fang-Hua
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.23-23
    • /
    • 2018
  • Taiwan, formerly known as Formosa, located on tropical and subtropical climate zones with abundant biological resources. According to the latest version of the Flora of Taiwan, there are 4339 species of vascular plants including 1054 endemic species. First, Taiwania (Taiwania cryptomerioides), named after its native island of Taiwan, have been isolated more than 500 secondary metabolites, including lignans, terpenoids, steroids, and flavonoids. Several of the metabolites are reported to have antibacterial, antifungal, antimite, antitermite and antitumor activities. In order to investigate plant secondary metabolic diversity toward industrial applications, we established deep transcriptome resources for non-model plants and fungi to produce terpenoid metabolites of economic importance. Second, many plants of Lauraceae have been utilized in folk medicine for their exciting bioactivities. The twigs and leaves from 27 tree species of Lauraceae grown in Taiwan were performed to evaluate potential bioactivity. The leaves of Cinnamomum osmophloeum are traditionally used in folk medicines, and many biological activities have been identified, such as antibacterial, antifungal, antitermite, antidiabetic, antihyperuricemia, antiinflammatory, and antioxidant activities. However, C. osmophloeum has nine chemotypes with various secondary metabolite profiles. In order to efficiently produce active compounds, we established the genetic markers to identify the chemotype plants. Finally, Cinnamomum kanehirae is the host of the medicinal mushroom Antrodia cinnamomea. Several in vivo and in vitro studies indicated that A. cinnamomea possesses a diverse range of biological activities. Because of the potential pharmacological application, we established the transformation system to enhance the triterpenoid contents production.

  • PDF