• Title/Summary/Keyword: Apparent Metabolisable Energy

Search Result 12, Processing Time 0.027 seconds

Potential Feeding Value of Deoiled Rice Bran by Japanese Quails. 1. The Metabolisable Energy Content

  • Bhanja, S.K.;Verma, S.V.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.5
    • /
    • pp.680-683
    • /
    • 2001
  • The apparent metabolisable energy (AME) and N-corrected ME (AMEn) of deoiled rice bran (DORB) were determined with adult quails at 6 and 10- week of age. The DORB obtained from two types of extraction process, Batch (DORB-B) and the Continuous (DORB-C), was each included in a practical type of the reference diet at 20 or 40% level. The analysed crude protein, ether extract, total ash, calcium, phosphorus, glucose and starch content of DORB-B and DORB-C were found at 19.0, 0.79, 17.05, 0.11, 1.92, 2.3, 11.22, and 15.02, 1.56, 13.0, 0.40, 2.76, 2.16, 19.0, respectively. The level of inclusion of DORB in diet appeared to exert a significant effect on the AME and AMEn values. When bioassayed at 20% inclusion level the DORB was found to have a significantly (p<0.01) lower value than that obtained at 40% inclusion level. However, no significant effect of age of quails on the AME values of DORB was evident. The ME bioassays with quails gave significantly (p<0.01) higher AME values for DORB-C than DORB-B thereby indicating that the continuous system of solvent extraction of rice bran is superior to the batch system from this point of view. The AME value of DORB predicted from its chemical composition also revealed that the DORB-C contained approximately 15% more energy than that in DORB-B.

Effects of Dietary Lysine and Microbial Phytase on Growth Performance and Nutrient Utilisation of Broiler Chickens

  • Selle, P.H.;Ravindran, V.;Ravindran, G.;Bryden, W.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1100-1107
    • /
    • 2007
  • The effects of offering broilers phosphorus-adequate diets containing 10.0 and 11.8 g/kg lysine, without and with 500 FTU/kg exogenous phytase, on growth performance and nutrient utilisation were determined. Each of the four experimental diets was offered to 6 replicates of 10 birds from 7 to 28 days of age. Effects of treatment on performance, apparent metabolisable energy, apparent ileal digestibility of amino acids and bone mineralisation were examined. Both additional lysine and phytase supplementation improved (p<0.05) weight gain and feed efficiency, with interactions (p<0.05), as phytase responses were more pronounced in lysine-deficient diets. Phytase improved (p<0.05) apparent metabolisable energy, which was independent of the dietary lysine status. Bone mineralisation, as determined by percentage toe ash, was not affected by treatment, which confirms the phosphorus-adequate status of the diets. Phytase increased (p<0.05) the apparent ileal digestibility of the sixteen amino acids assessed. Unexpectedly, however, the dietary addition of 1.8 g/kg lysine, as lysine monohydrochloride, increased (p<0.05) the ileal digestibility of lysine per se and also that of isoleucine, methionine, phenylalanine, valine, aspartic acid, glutamic acid and tyrosine. In addition, there were significant interactions (p<0.05) between additional lysine and phytase supplementation for arginine, lysine, phenylalanine, aspartic acid, glutamic acid, glycine and serine digestibilities, with the effects of phytase being more pronounced in lysine-deficient diets. The possible mechanisms underlying the increases in amino acid digestibility in response to additional lysine and the interactions between lysine and microbial phytase in this regard are discussed. Also, consideration is given to the way in which phytate and phytase may influence ileal digestibility of amino acids.

Variation in Nutritive Value of Commercial Broiler Diets

  • Ru, Y.J.;Hughes, R.J.;Choct, M.;Kruk, J.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.830-836
    • /
    • 2003
  • The classical energy balance method was used to measure the apparent metabolisable energy (AME) of four batches of broiler starter and finisher diets produced by two commercial feed companies. The results showed there was little variation in protein content between batches, but NDF content varied from 13.3% to 15.5% between batches of diet. The batch variation in chemical composition differed between feed manufacturers. While there was no difference in AME and feed conversion ration (FCR) between batches of starter diets produced by company A, FCR and AME ranged from 1.76-1.94 (p<0.001) and 11.38-11.90 MJ/kg air dry (p<0.05), respectively, for diets produced by company B. Similar results were found in a second experiment. There was no difference in AME, dry matter digestibility (DMD) and FCR between batches for finishing diet produced by company B, but a large variation occurred for the finisher diets from company A (p<0.01), where the ranges of FCR, AME and DMD were 1.95-2.30, 10.5-12.3 (MJ/kg air dry) and 58-68%, respectively. FCR was correlated with AME. AME was negatively related to the content of fibre in the diet, but positively related to DMD. The preliminary results based on 24 samples showed that near infrared spectroscopy (NIR) has the potential to predict FCR, intake, AME and DMD of commercial broiler diets, with $R^2$ being 0.93, 0.89, 0.95 and 0.98, respectively. The standard error of cross validation was below 0.2 for AME and only 0.06 for FCR.

Effect of Chemical Composition and Dietary Enzyme Supplementation on Metabolisable Energy of Wheat Screenings

  • Mazhari, M.;Golian, A.;Kermanshahi, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.386-393
    • /
    • 2011
  • Three trials were conducted to determine the available energy of different wheat screening varieties collected from different locations of Khorasan in Iran. In experiment 1, chemical composition and the nitrogen corrected true metabolisable energy (TMEn) were evaluated. A precision-fed rooster assay was used, in which, each wheat screening sample was tube fed to adult roosters, and the excreta were collected for 48-h. In Exp. 2 and 3, five and two wheat screening verities-based diets with or without xylanase and phytase were fed to 16-day old battery reared chicks respectively, and total feed consumption and excreta were measured during next three days. The variable nature of wheat screening varieties led to significant differences in mean TMEn values (p<0.01). The TMEn values of samples determined with adult roosters varied by ${\pm}5.03%$ of the mean value ($3,097.65{\pm}49.32\;kcal/kg$) and ranged from 2,734.90 to 3,245.12 kcal/kg. There was a significant correlation (p<0.05) between crude fiber (CF), neutral detergent fiber (NDF), and acid detergent fiber (ADF) with TMEn, and the greatest correlation coefficient was observed between NDF and TMEn (r = -0.947; p<0.001). The optimal equation in terms of $R^2$ from using a single chemical analysis was obtained with NDF: TMEn = 4,152.09-27.80 NDF ($R^2$ = 0.90, p<0.0001), and the TME prediction equation was improved by the addition of the crude protein (CP) and ASH content to sequential analysis: TMEn = 3,656.97-28.65 NDF+32.54 CP+38.70 ASH ($R^2$ = 0.98, p<0.0001). The average AMEn values of 5 and 2 wheat screening varieties determined with young broiler chickens were $2,968.41{\pm}25.70\;kcal/kg$ and $2,976.38{\pm}8.34\;kcal/kg$ in Exp. 2 and Exp. 3, respectively. Addition of xylanase and phytase to wheat screenings resulted in significant (p<0.01) improvement in AMEn by 4.21 and 2.92%, respectively.

Effect of Xylanase on Performance and Apparent Metabolisable Energy in Starter Broilers Fed Diets Containing One Maize Variety Harvested in Different Regions of China

  • O'Neill, H.V. Masey;Liu, N.;Wang, J.P.;Diallo, A.;Hill, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.4
    • /
    • pp.515-523
    • /
    • 2012
  • The objective of this study was to investigate the variability in broiler performance, apparent metabolisable energy (AME) and ileal digestible energy (IDE) between five different maize samples fed with and without xylanase at 16,000 U/kg. Various in vitro characterisations were conducted to determine if any could predict performance or AME. Samples of the maize were harvested in five diverse regions and fed individually in a mash diet as follows (g/kg): test maize 608.3; soya bean meal (SBM) 324.1; poultry fat 25.2; salt 4.6; met 2.6; lys 1.6; thr 0.5; limestone 9.7, dical 18.4; vit/min 5.0; CP 210 and ME (kcal/kg) 3,085. The diets were fed to 720 broilers with 6 replicates, each containing 12 birds per treatment, from 0 to 18 d of age. Maize samples were analysed for starch, protein, crude fibre, fat, protein solubility index (PSI) and vitreousness using near infra red reflectance spectroscopy (NIR). They were also assayed using an in vitro starch digestibility method. The results showed that there was no effect of harvest region on the feed intake (FI), body weight gain (BWG) or feed conversion ratio (FCR) of the broilers over the 18 d period (p = 0.959, 0.926, 0.819 respectively). There was an improvement in all parameters with the addition of xylanase (FI p = 0.011; BWG and FCR p<0.001). There was a significant positive effect of xylanase on IDE, AME, IDE Intake (IDEI) and AME intake (AMEI) (p<0.0001 in all cases). Although there was no significant effect of maize source, there was a strong trend towards variability in IDE (p = 0.066) and AME (p = 0.058). There were no significant correlations (p<0.05) between any proximate or physiochemical values and any performance or AME values. This may suggest that none of those selected were suitable predictors for performance or AME. The broilers performed well according to the breed guidelines, with slightly increased FI, increased BWG and similar FCR prior to the addition of xylanase. When FCR and BWG were analysed with FI as a covariate, xylanase addition remained significant suggesting that the improvement in BWG and FCR was driven by an increase in digestibility and nutrient availability.

Fructans from Renga Renga Lily (Arthropodium cirratum) Extract and Frutafit as Prebiotics for Broilers: Their Effects on Growth Performance and Nutrient Digestibility

  • Vidanarachchi, J.K.;Iji, P.A.;Mikkelsen, L.L.;Choct, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.5
    • /
    • pp.580-587
    • /
    • 2010
  • An experiment was conducted to evaluate the effect of dietary water-soluble carbohydrate extract from Renga renga lily (Arthropodium cirratum) and a commercial product, $Frutafit^{{\circledR}}$ (both fructans) on the performance, organ weights, ileal digestibility and gut morphology of male Cobb broiler chickens. There were six treatment groups: a negative control with no supplements, a positive control supplemented with 45 ppm Zn-bacitracin, and four test diets each supplemented with Renga renga lily extract or Frutafit at 5 or 10 g/kg diet. Supplementation with low levels of Renga renga lily extract and Frutafit in the diet did not affect productive parameters, whereas the inclusion of a high level of Frutafit had a negative effect on BWG and FI compared with birds fed the negative control diet. The addition of an antibiotic to the diet significantly improved (p<0.05) the BWG and FCR of broilers. Apparent ileal digestibility of dry matter, starch, protein and fat was not affected (p>0.05) by supplementation with both levels of lily extract and the low level of Frutafit. The apparent ileal digestibility of dry matter, protein and fat was decreased (p<0.05) by the high level of Frutafit. The apparent metabolisable energy (AME) of the diets fed the high level of Frutafit was approximately 0.2 MJ/kg DM lower than that of the negative control group. The addition of Zn-bacitracin increased (p<0.05) the apparent ileal digestibility of fat. The relative weight of the liver was higher (p<0.05) in broilers supplemented with the high level of Frutafit than for negative control birds at 14 and 35 d of age. Feeding Renga renga lily extract or Frutafit had no effect on the gut morphology of birds on d 14 and 35. It can be concluded that dietary inclusion of fructans from the two sources used in this study affected broiler performance differently and in a dose-dependent manner.

Effects of Maize Source and Complex Enzymes on Performance and Nutrient Utilization of Broilers

  • Tang, Defu;Hao, Shengyan;Liu, Guohua;Nian, Fang;Ru, Yingjun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1755-1762
    • /
    • 2014
  • The objective of this study was to investigate the effect of maize source and complex enzymes containing amylase, xylanase and protease on performance and nutrient utilization of broilers. The experiment was a $4{\times}3$ factorial design with diets containing four source maize samples (M1, M2, M3, and M4) and without or with two kinds of complex enzyme A (Axtra XAP) and B (Avizyme 1502). Nine hundred and sixty day old Arbor Acres broiler chicks were used in the trial (12 treatments with 8 replicate pens of 10 chicks). Birds fed M1 diet had better body weight gain (BWG) and lower feed/gain ratio compared with those fed M3 diet and M4 diet (p<0.05). Apparent ileal crude protein digestibility coefficient of M2 was higher than that of M3 (p<0.05). Apparent metabolisable energy (AME) and nitrogen corrected AME (AMEn) of M1 were significant higher than those of M4 (p<0.05). Supplementation of the basal diets with enzyme A or B improved the BWG by 8.6% (p<0.05) and 4.1% (p>0.05), respectively. The fresh feces output was significantly decreased by the addition of enzyme B (p<0.05). Maize source affects the nutrients digestibility and performance of broilers, and a combination of amylase, xylanase and protease is effective in improving the growth profiles of broilers fed maize-soybean-rapeseed-cotton mixed diets.

Effects of Phytase Supplementation of Diets with Two Tiers of Nutrient Specifications on Growth Performance and Protein Efficiency Ratios of Broiler Chickens

  • Selle, P.H.;Ravindran, V.;Pittolo, P.H.;Bryden, W.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1158-1164
    • /
    • 2003
  • In two feeding experiments male and mixed-sex broiler chicks were offered diets based on sorghum and a wheatsorghum blend with two tiers of nutrient specifications, without and with microbial phytase (600 and 800 FTU/kg), from 7-25 and 1-42 days post-hatch, respectively. The nutrient specifications for protein, amino acids, energy density and phosphorus (P) of standard diets were reduced to formulate the modified diets on a least-cost basis. Calculated differences in nutrient specifications between standard and modified diets ranged from 14.3 to 17.1 g/kg crude protein, 0.24 to 0.40 MJ/kg apparent metabolisable energy (AME) and 1.06 to 1.20 g/kg available P. In both experiments, reduced nutrient specifications had a negative impact on growth rates and feed efficiency and phytase supplementation had a positive influence on growth performance and protein efficiency ratios (PER). Phytase addition to the less expensive, modified diets either partially or entirely compensated for reduced growth performance and, consequently, feed costs per kg of live weight gain were reduced. In Experiment 1, phytase increased (p<0.001) nitrogen-corrected AME (AMEn) from 15.39 to 15.89 MJ/kg dry matter. For nitrogen (N) retention there was an interaction (p<0.05) between diet type and phytase as the effects of phytase on N retention were more pronounced in the modified diets, with an increase from 0.512 to 0.561. These results demonstrate the positive effects of phytase on protein and energy utilisation, in addition to its established liberation of phytate-bound P and illustrate the feasibility of assigning nutrient replacement values to the feed enzyme for consideration in least-cost ration formulations. Further work is, however, required to define the most appropriate reductions in nutrient specifications in association with phytase supplementation.

Validation of Prediction Equations to Estimate the Energy Values of Feedstuffs for Broilers: Performance and Carcass Yield

  • Alvarenga, R.R.;Rodrigues, P.B.;Zangeronimo, M.G.;Makiyama, L.;Oliveira, E.C.;Freitas, R.T.F.;Lima, R.R.;Bernardino, V.M.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1474-1483
    • /
    • 2013
  • The objective was to evaluate the use of prediction equations based on the chemical composition of feedstuffs to estimate the values of apparent metabolisable energy corrected for nitrogen balance (AMEn) of corn and soybean meal for broilers. For performance and carcass characteristics, 1,200 one-d-old birds (male and female) were allotted to a completely randomised factorial $2{\times}8$ (two genders and eight experimental diets) with three replicates of each sex with 25 birds. In the metabolism trial, 240 eight-d-old birds were distributed in the same design, but with a split plot in time (age of evaluation) with five, four and three birds per plot, respectively, in stages 8 to 21, 22 to 35, and 36 to 42 d of age. The treatments consisted of the use of six equations systems to predict the AMEn content of feedstuffs, tables of food composition and AMEn values obtained by in vivo assay, totalling eight treatments. Means were compared by Scott-Knott test at 5% probability and a confidence interval of 95% was used to check the fit of the energy values of the diets to the requirements of the birds. As a result of this study, the use of prediction equations resulted in better adjustment to the broiler requirements, resulting in better performance and carcass characteristics compared to the use of tables, however, the use of energy values of feedstuffs obtained by in vivo assay is still the most effective. The best equations were: AMEn = 4,021.8-227.55 Ash (for corn) combined with AMEn = -822.33+69.54 CP-45.26 ADF+90.81 EE (for soybean meal); AMEn = 36.21 CP+85.44 EE+37.26 NFE (nitrogen-free extract) (for corn) combined with AMEn = 37.5 CP+46.39 EE+14.9 NFE (for soybean); and AMEn = 4,164.187+51.006 EE-197.663 Ash-35.689 CF-20.593 NDF (for corn and soybean meal).

Influence of Phytase and Xylanase Supplementation on Growth Performance and Nutrient Utilisation of Broilers Offered Wheat-based Diets

  • Selle, P.H.;Ravindran, V.;Ravindran, G.;Pittolo, P.H.;Bryden, W.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.394-402
    • /
    • 2003
  • Individual and combined supplementation of phosphorus-adequate, wheat-based broiler diets with exogenous phytase and xylanase was evaluated in three experiments. The effects of the enzyme combination in lysine-eficient diets containing wheat and sorghum were more pronounced than those of the individual feed enzymes. The inclusion of phytase plus xylanase improved (p<0.05) weight gains (7.3%) and feed efficiency (7.0%) of broilers (7-28 days post-hatch) and apparent metabolisable energy (AME) by 0.76 MJ/kg DM. Phytase plus xylanase increased (p<0.05) the overall, apparent ileal digestibility of amino acids by 4.5% (0.781 to 0.816); this was greater than the responses to either phytase (3.6%; 0.781 to 0.809) or xylanase (0.7%; 0.781 to 0.784). Absolute increases in amino acid digestibility with the combination exceeded the sum of the individual increases generated by phytase and xylanase for alanine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, phenylalanine, threonine, tyrosine and valine. These synergistic responses may have resulted from phytase and xylanase having complementary modes of action for enhancing amino acid digestibilities and/or facilitating substrate access. The two remaining experiments were almost identical except wheat used in Experiment 2 had a higher phytate concentration and a lower estimated AME content than wheat used in Experiment 3. Individually, phytase and xylanase were generally more effective in Experiment 2, which probably reflects the higher dietary substrate levels present. Phytase plus xylanase increased (p<0.05) gains (15.4%) and feed efficiency (7.0%) of broiler chicks from 4-24 days post-hatch in Experiment 2; whereas, in Experiment 3, the combination increased (p<0.05) growth to a lesser extent (5.6%) and had no effect on feed efficiency. This difference in performance responses appeared to be 'rotein driven'as the combination increased (p<0.05) nitrogen retention in Experiment 2 but not in Experiment 3; whereas phytase plus xylanase significantly increased AME in both experiments. In Experiments 2 and 3 the combined inclusion levels of phytase and xylanase were lower that the individual additions, which demonstrates the benefits of simultaneously including phytase and xylanase in wheat-based poultry diets.