• Title/Summary/Keyword: Aquatic humic substances

Search Result 8, Processing Time 0.098 seconds

CHARACTERIZATION OF RECALCITRANT DISSOLVED ORGANIC MATTER IN LAKE AND INFLOW RIVER WATERS

  • Kim, Yong-Hwan;Lee, Shun-Hwa;Kim, Jung-Ho;Park, Jong-Woong;Choi, Kwang-Soon
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.181-193
    • /
    • 2006
  • The hydrophilic or hydrophobic characteristics of dissolved organic matter (DOM) from different origins in lake and river waters were investigated using spectrometric and chromatographic analyses of water samples. DOM in a deep, mesotrophic lake (Lake Unmun) was fractionated using three types of ion exchange resins and classified into aquatic humic substances (AHS), hydrophobic neutrals (HoN), hydrophilic acids (HiA), hydrophilic neutrals (HiN), and bases (BaS). The DOM fractionation provided insight into the understanding of the nature of heterogeneous DOM molecules present in different water sources. The UV/DOC ratios were determined for samples from the influent river and lake waters during DOM fractionation and incubation. AHS prevailed over DOM in the lake and river waters. After biodegradation, the relative contribution of AHS in the total DOM became more significant. It indicates that the AHS fraction would increase while water stay long time in the lake.

RESEARCH PAPERS : CHARACTERIZATION OF DISSOLVED ORGANIC MATTER IN A SHALLOW EUTROPHIC LAKE AND INFLOWING WATERS

  • Kim, Yong-Hwan;Lee, Seon-Hwa;Akio, Imai;Kazuo, Matsushige
    • Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.93-101
    • /
    • 2002
  • The seasonal patterns of dissolved organic matter (DOM) in Lake Kasumigaura, a shallow, eutrophic lake, and serveral DOM sources in its catchment area were investigated. DOM was fractionated using three resin adsorbents into classes: aquatic humic substances (AHS=humic acid+fulvic acid), hydrophobic neutrals (HoN), hydrophilic acids (HiA), bases (BaS) and hydrophilic neutrals (HiN). The DOM produced significantly different fraction distributions depending on the origin of sample. AHS and HiA prevailed over AHS in the lake while AHS and HiA existed at almost the same concentration levels in the rivers. AHS seems to be a more dominant component in rever water than lake water. The dominance of organic acids was also observed in the DOM sources: forest stream (FS), plowed field percolate (PFP), domestic sewage (DS) and sewage treatment plant effluent (STPE).

Characterization of Humic Acid in the Chemical Oxidation Technology(I) - Characteristics by Photocatalytic Oxidation Process - (화학적 산화법에 의한 부식산의 분해 처리기술에 관한 연구(I) - 광산화공정을 통한 부식산의 분해특성 분석 -)

  • Kim, Jong Boo;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.234-240
    • /
    • 2000
  • The efficiency of Photocatalytic Oxidation Process were investigated for the treatment of Aquatic Humic Substances (AHS). In UV-only system, pH 7-9 was the optimum pH range for TOC removal, and alkali range was the optimum pH for absorbance decrease. In UV/$TiO_2$ system, the optimum $TiO_2$ dosage was 50ppm and over 50ppm of $TiO_2$ dosage was not effective for removal of AHS. In UV/$H_2O_2$ system, optimum $H_2O_2$ dosage was 20mM, when over 20mM dosage, removal of TOC (Total Organic Carbon) and absorbance was decreased. Radical scavenger affected on the photo-oxidation of AHS. Removal rate of TOC and absorbance was decreased by addition of carbonate ions and TOC removal was more effected than that of absorbance.

  • PDF

Analysis of Natural Organic Matter (NOM) Characteristics in the Geum River (금강 수계 자연유기물 특성 분석)

  • Yu, Soon-Ju;Kim, Chang-Soo;Ha, Sung-Ryong;Hwang, Jong-Yeon;Chae, Min-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 2005
  • Natural organic matter(NOM) is defined as the complex matrix of organic material and abundant in natural waters. It affects the performance of unit operations for water purification. Several kinds of analytical indicators such as DOC, specific ultraviolet absorbance(SUVA), apparent molecular weight (AMW), fractionation and high performance size exclusive chromatography(HPSEC) have been used to understand characteristics and variations of NOM. This study aims to evaluate the characteristics of NOM in the Geum River system comprising with stream flows and reservoirs. It was identified that SUVA denoting the portion of humic substance in water ranged within 1.60~3.36. Using resin adsorbents, dissolved organic carbon(DOC) was fractionated into three classes: hydrophobic bases(HOB), hydrophobic acids(HOA) and hydrophilic substances(HI). HI dominates in all samples, collectively accounting for more than 62% of the DOC. HOA was the second dominated fraction and it varied considerably but accounted for about 30% of the DOC. The distribution of high molecular weight(HMW) measured by HPSEC being used to determine the molecular weight distribution of aquatic humic substances was 40.1% and 38.7% in reservoir and stream flow, respectively. The distribution of low molecular weight(LMW) in stream flow was 13.2% higher than that in reservoir. And apparent molecular weight less than 1KDa, which include the molecular weight of hydrophilic organic matter, occupied with 69.2% and 68.2% in stream flow and reservoir, respectively. While the molecular weight of 1 to 100 KDa including humic substances ranged with 18.6% and 21.6% in stream flow and reservoir, respectively. Seasonal variation of refractory dissolved organic carbon was similar to that of SUVA.

Structural and Chemical Characterization of Aquatic Humic Substances in Conventional Water Treatment Processes (재래식 정수처리 공정에서 수질계 휴믹물질의 구조 및 화학적 특성분석)

  • Kim, Hyun-Chul;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • Humic substances(HS) from raw and process waters at a conventional water treatment plant were isolated and extracted by physicochemical fractionation methods to investigate their characteristics. They are characterized for their functionality, chemical composition, and spectroscopic characteristics using FT-IR(Fourier transform infrared) and $^1H-NMR$(proton nuclear magnetic resonance) spectroscopy. Humic fraction gradually decreased from 47.2% to 26.4%(from 0.97 to 0.54 mgC/L) through conventional water treatment processes. Concentration of phenolic groups in the HS fraction gradually decreased from 60.5% to 21.8%(from 12.2 to $6.0\;{\mu}M/L$ as phenolic-OH) through water treatment. In the case of carboxylic groups, the concentration increased from 39.5% to 46.9%(from 7.9 to $10.6\;{\mu}M/L$ as COOH) by pre-chlorination, but gradually decreased to 34.2%($9.4\;{\mu}M/L$ as COOH) through sedimentation and sand filtration. From the results of the FT-IR and $^1H-NMR$ spectra of HS, the content of carboxylic groups increased and ratio of aliphatic protons to aromatic protons($P_{Al}/P_{Ar}$) also increased through water treatment, which indicated the increase of aliphatic compounds.

Structural and Chemical Characterization of Aquatic Humic Substances in Advanced Water Treatment Processes (고도정수처리 공정에서 수질계 휴믹물질의 구조 및 화학적 특성분석)

  • Kim, Hyun-Chul;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.240-246
    • /
    • 2005
  • Humic substances HS) from process waters at advanced water treatment plant consisted of GAC and Ozone/GAC processes were isolated and extracted by physicochemical fractionation methods to investigate their characteristics. They are characterized for their functionality, chemical composition, spectroscopic characteristics using FT-IR and $^1H$-NMR spectroscopy. Humic fraction gradually decreased from 36.3% to 24.2% from 0.45 to 0.30 mgC/L) through ozonation and carbon adsorption. The humic fraction was isolated into the phenolic and carboxylic groups using A-21 resin, and the concentration of phenolic groups gradually decreased from 38.4% to 23.5% (from 4.9 to $3.2\;{\mu}M/L$ as phenolic-OH) through ozonation and carbon adsorption. In the case of carboxylic groups, the concentration decreased from 61.6% to 43.3% (from 7.8 to $5.8\;{\mu}M/L$ as COOH) through the water treatment processes. On the other hand, concentrations of those roups decreased from 38.4% to 24.0% and 61.6% to 44.9% through carbon adsorption without ozonation, respectively. The structural changes of HS identified from FT-IR and $^1H$-NMR were consistent with the results from the isolation of functional groups in HS.

Spectroscopic Characterization and Seasonal Distribution of Aquatic Humic Substances Isolated from Han River Water (한강원수로부터 분리된 수중휴믹물질의 계절적 분포와 분광학적 특성분석)

  • Kim, Hyun-Chul;Lee, Seock-Heon;Kim, Kyung-Ju;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.540-547
    • /
    • 2007
  • Humic substances(HS) from Han River water was physic-chemically isolated by fractionational methods to investigate the seasonal distribution and to characterize the properties compared with intrinsic humic materials. Various HS samples were analyzed by element, Fourier transform infrared(FT-IR), proton nuclear magnetic resonance$(^1H-NMR)$ and fluorescence analyzers. The portion of HS from Han River water(HRHS) was 47.0% on the average, however it appeared that rainfall event brought about higher fraction of HS in Han River water by the periodic investigation. Aromaticity and humification degree of the HRHS were relatively lower than those of intrinsic humic materials originated from decomposing vegetation. FT-IR, $^1H-NMR$ and fluorescence spectroscopy showed the distinct differences between HRHS and intrinsic humic materials. Commercial humic materials could not represent structural and functional characteristics of local HS. The fluorescence spectroscopy, a relatively simple measurement, was found most useful tool to estimate humification degree for humic materials from particular sources.

A Study on the Ozonation of Aquatic Humic Substances(AHS) Extracted from Soyang Lake Water (소양호에서 추출한 수중 부식질(AHS)의 오존처리에 대한 연구)

  • An, Bok-Yeop;Rhee, Dong-Seok;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.453-461
    • /
    • 2000
  • Aquatic humic substance (AHS) was extracted from Soyang lake water using XAD-8 resin. and its concentration distribution in the lake from May to October. 1997 was determined. Ozonation characteristics of the AHS were studied as factors of pH, carbonate ion concentration. and the biodegradability and structural changes of the AHS were also investigated after ozonaticn. DOC distribution in Soyang Lake water was 1~3 mg/L. and the concentrations of AHS ranged between 0.2~0.8 mg/L. which was corresponding to 20~30% of DOC. AHS was composed of around 20% of HA and 80% of FA. The optimum pH value for AHS ozonation was in range of pH 7~9. When carbonate ions were added for AHS ozonation as a ladical scavenger. it was found that DOC removals were decreased. and the absorbance decreases were increased slightly. Biodegradability of the ozonized AHS was 50% higher than that of unozonated AHS. $^{13}C-NMR$ analysis showed that the aromatic compounds of AHS, after ozonation, were decreased from 49% to 17%. and the aliphatic and carboxylic compounds were increased from 34% to 51% and from 17% to 32%. respectively.

  • PDF