• Title/Summary/Keyword: Arctic-Alpine and Alpine Plants

Search Result 8, Processing Time 0.031 seconds

The Alpine and Subalpine Geoecology of the Korean Peninsula (한반도의 고산과 아고산의 지생태)

  • 공우석
    • The Korean Journal of Ecology
    • /
    • v.21 no.4
    • /
    • pp.383-387
    • /
    • 1998
  • the geoecology of the alpine and subalpine belts of the Korean Peninsula, its component plant group, its environmental history, and climatic amplitudes of the arctic-alpine and alpine plants has reviewed and discussed. The present-day alpine and subalpine landscapes are likely to have been formed during the post-glacial warming phase. The disjunctive distribution of many alpine and subalpine plants, however, suggests a former continuous distribution of these both locally and on a broader, and the subsequent breakdown of a former continuous range into fragments as the climate ameliorated during the post-glacial warming phase. The presences of numerous arctic-alpine and alpine plants on the alpine and subalpine belts of the Korean Peninsula, are mainly their relative degree of sensitivity to high summer temperatures. The continued survivals of alpine species and landscape in Korea is in danger if global warming associated the greenhouse effect takes place.

  • PDF

Present Distribution of Cryophilous Plants and Palaeoenvironment in the Korean Peninsula (한반도 한지선호식물의 분포와 고환경)

  • Kong, Woo-seok
    • The Korean Journal of Quaternary Research
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 1991
  • The distribution of cryophilous arctic-alpine and alpine plants in Korea is reviewed in connection with palaeoenvironment, along with a discussion to their origins, patterns of migration, and their refugia. At present, the estimated number of Korean arctic-alpine and alpine species is 419, and this includes 75 arctic-alpine species, 239 alpine species and 105 Korean endemic alpine species. The disjunctive distribution of cryophilous arctic-alpine and alpine plants is likely to be due to first, the downslope and southward expansion of those species towards the Korean peninsula as a primary refugia from the arctic region as the Pleistocene glacial phases approached, and then their subsequent isolation upslope in mountain areas toward a secondary refugia as the interglacial and post-glacial climatic ameliorations followed; secondly, the expansion of forest tree communities on lowland and montane areas subsequent to the end of the Pleistocene has had the effect of dividing formerly high mountains as a result of the increased competition; and thirdly, the general disapperance or restriction of available habitats for arctic-alpine and alpine species because of post-glacial climatic amelioration. The existence of 139 alpine species exclusively in the north of Korea may be due to the following reasons; first, frequent exchanges of alpine floras with other neighbouring East Asian regions would have been facilitated; secondly, there are numerous high mountains available for the alpine plants to survive and prosper during the post-glacial period; thirdly, the existence of easy accesses between mountains within the north, which has enabled alpine floras to migrate when necessary; and finally, the availability of diverse environments and habitats for the alpine flora of the north. However, the continued survival of those species in Korea at the world's or East Asia's southernmost limits of their distribution for many species is in danger if global warming associated with the greenhouse effect takes place.

  • PDF

Biogeography of the Alpine Plants at Hallasan, Jeju Island, Korea

  • Kong, Woo-Seok
    • The Korean Journal of Quaternary Research
    • /
    • v.19 no.2
    • /
    • pp.40-43
    • /
    • 2005
  • The island alpine biogeography of Mt. Halla (Hallasan), Jeju Island (Jejudo), Korea is discussed. The presence of numerous species of alpine flora on Mt. Halla, the southernmost distributional limit for certain species, may primarily be attributed to palaeo-environmental factors, since it can not be wholly explained by reference to current environmental conditions. The alpine flora on the peak of Mt. Halla, mainly above 1,500m a.s.l, is evidently descended from immigrants from NE Asia via the Korean Peninsula during the epochs of the Ice Age. These plants, which are very intolerant of competition with temperate vegetation, have been able to persist in alpine belts thanks to their harsh climatic conditions, sterile soil, rugged topography and cryoturbation. The alpine plants on Hallasan are in a stage or process of retreat toward the mountaintop, most likely due to recent climatic amelioration. The lower limit of some species seems to coincide with maximum summer isotherms. The continued survival of arctic-alpine and alpine plants on the summit of Hallasan, Jejudo, the Korean Peninsula, however, is in danger, if global warming associated with the greenhouse effect continues.

  • PDF

Global Warming and Alpine Vegetation

  • Kong, Woo-seok
    • The Korean Journal of Ecology
    • /
    • v.22 no.6
    • /
    • pp.363-369
    • /
    • 1999
  • Reconstruction of the past vegetational changes of Korea in connection with climate changes enables to understand the impacts of past and future global warming on alpine vegetation. Despite the early appearance of the cold-tolerant vegetation since the Mesozoic Era. the occurrence of warmth-tolerant vegetation during the Oligocene and Miocene implies that most of alpine and subalpine vegetations have been confined to the alpine and subalpine belts of northern Korean Peninsula. The presence of cold-episodes during the Pleistocene. however. might have caused a general southward and downslope expansions of cold-tolerant alpine and subalpine vegetation. But the climatic warming trend during the Holocene or post-glacial period eventually has isolated cold-tolerant alpine and subalpine vegetation mainly in the northern Korea. but also on scattered high mountains in the southern Korea. The presence of numerous arctic-alpine and alpine plants on the alpine and subalpine belts is mainly due to their relative degree of sensitivity to high summer temperatures. Global warming would cause important changes in species composition and altitudinal distributional pattern. The altitudinal migration of temperate vegetation upward caused by climatic warming would eventually devastate alpine plants.

  • PDF

Biogeographic Feature of North Korean Ecosystem (북한 자연생태계의 생물지리적 특성)

  • Kong, Woo-Seok
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.3
    • /
    • pp.157-172
    • /
    • 2002
  • This work aims to collect a biogeographic informations on the biota, alpine ecosystem, nature reserves, forest ecosystem of North Korea, and also to accumulate a basic data on the current situation and problem of the natural ecosystem of North Korea for the preparation of future cooperation and exchange between South and North Koreas. The obtained findings are as follow. First, North Korean biota contains 18,013 species, and consists of 6,710 plant species, including 3,860 species of vascular plants. Secondly, urgent investigation on the biogeographically important arctic-alpine and alpine plants and ecosystem, those are known to be endangered due to environmental change and global warming, is required. Thirdly, the conservations of diverse nature in North Korea are conducted by the introduction of various systems, such as nature preservation region, reserves for plant, animal and sea bird, and natural monuments. Fourthly, out of 9.5 million hectares of forest, one million hectares have already faced forest denudation, thus caused lots of damages for forest ecosystem. Sharp decline of North Korean forest land are due mainly to the expansion of terraced dry-field farming and deforestation. Recovery of denudated forest land should be approached by both South and North Korean sides to solve the problem of shortage of foods and restoration of natural ecosystem of North Korea.

Species Composition and Distribution of Korean Alpine Plants (한반도 고산식물의 구성과 분포)

  • 공우석
    • Journal of the Korean Geographical Society
    • /
    • v.37 no.4
    • /
    • pp.357-370
    • /
    • 2002
  • Present work aims to investigate the species composition, physiognomy and distribution of arctic-alpine and alpine plants(AAP) of the Korean Peninsula. The dominance of AAP in the northern Korea may be due to the frequent exchanges of floras with circumpolar regions for the seek of the glacial refugia during the alternate Pleistocene glacial epochs. The post-glacial climatic amelioration pushed AAP back northwards and upwards, so they now shows disjunctive distribution on separate mountain tops. The diverse morphological adaptations of AAP to severe environmental conditions, viz. the dominance of perennial species, stunted tree growth, multiple protection of leaves, krummholz, and dwarf shrubs, are the result of long-term graduall development which have safeguarded the survival of AAP in a such a harsh cryo-climatic area. The appearance of the Korean endemic AAP reflects the long-term isolation of species in Korea, and the local environmental diversities which have both accentuated this isolation and aided the development of genetic diversity. Evergreen broad-leaved AAP at c. 1,500m to 1,800m and above are now endangered because of the competition from down-slope plants, and from the global warming.

The Vegetational and Environmental History of the Pre-Holocene Period in the Korean Peninsula (한반도 식생 및 환경변천사(홀로세 이전 시대를 중심으로))

  • Kong, Woo-Seok
    • The Korean Journal of Quaternary Research
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 1992
  • The reconstruction of the vegetational and environmental history of the Korean peninsula by the use of various fossil floral data from the Carboniferous period to the Pre-Holocene is reviewed. Though the oldest plant fossil in Korea (Neuropteris) dates back to the Carboniferous period, the first appearance of many of the present-day floristic genera indeed dates back to the Oligocene (c. 40 to 20 million years B.P.), and includes many thermophilous genera. The presence of thermophilous genera in the Oligocene at up to four degrees north of their present distributional limits implies that the climate of the Oligocene was warmer than that of today. The occurrence of similar thermophilous floristic element at up to six degrees north of their present range during the Middle Miocene suggests a maximum northward expansion of warmth-loving evergreen broadleaved vegetation for, recent Korean vegetation history. The continued occurrence of numerous present-day genera since the Oligocene period indicates a long-term stability of Korean vegetation, along with minor fluctuations within it. The admixture of evergreen coniferous plants and deciduous breadleaved plants, however, indicates a probable temperate climate for much of the Middle Pleistocene. There are couple of evidences which are indicative of an early-stage anthropogenic disturbance of natural vegetation during the Middle Pleistocene of Korea. The presence of cold-episodes during the Upper Pleistocene caused a general expansion of deciduous plants and cryophilous evergreen coniferous, plants. It is likely that the maximum southward expansion of cryophilous arctic-alpine and alpine floras in Korea occured during the penultimate glacial period. The disappearance of some cryophilous genera from 10,000 years B.P. marks the continued climatic amelioration since then, along with minor climatic fluctuations during the Holocene period.

  • PDF

Hardwood Cutting Propagation and Early Growth Characteristics of Empetrum nigrum var. japonicum K. Koch (시로미의 숙지삽목 증식 및 초기생장 특성)

  • Kim, Hong-Lim;Kim, Chan-Soo;Koh, Seok-Chan;Koh, Jung-Goon
    • Korean Journal of Plant Resources
    • /
    • v.19 no.4
    • /
    • pp.530-536
    • /
    • 2006
  • Hardwood cutting propagation and early growth characteristics were investigated in order to develop the method of cutting propagation and to find out growth characteristics in the low altitude for in situ and ex situ conservation of Empetrum nigrum var. japonicum K. Koch, which is typical arctic alpine plants on Mt. Halla. The growth of roots and shoots was different depending on hormone concentrations or soil conditions. The survival rate, rooting rate, root growth, number of root and shoot growth increased with treatment of 100 mg/l or 500 mg/l NAA. Consequently, optimum condition of hardwood cutting was at treatment with 100 mg/l or 500 mg/l NAA. When plantlets from hardwood cuttings were exposed to the field condition, after 7 months survival rate was 73.3% without shading while $91.1{\sim}94.4%$ at shading conditions. In the green house, however, survival rate of plantlets were $95.6{\sim}97.8%$ without shading. The growth of plantlets was different depending on sites and shading conditions. Particularly, the best growth was obtained when the plantlets were grown in shading conditions. It indicates that relative humidity and light intensity are correlated with the growth in the low altitude area.