• Title/Summary/Keyword: Artificial Intelligence

Search Result 4,734, Processing Time 0.036 seconds

A Study on the Analysis and Estimation of the Construction Cost by Using Deep learning in the SMART Educational Facilities - Focused on Planning and Design Stage - (딥러닝을 이용한 스마트 교육시설 공사비 분석 및 예측 - 기획·설계단계를 중심으로 -)

  • Jung, Seung-Hyun;Gwon, Oh-Bin;Son, Jae-Ho
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.25 no.6
    • /
    • pp.35-44
    • /
    • 2018
  • The purpose of this study is to predict more accurate construction costs and to support efficient decision making in the planning and design stages of smart education facilities. The higher the error in the projected cost, the more risk a project manager takes. If the manager can predict a more accurate construction cost in the early stages of a project, he/she can secure a decision period and support a more rational decision. During the planning and design stages, there is a limited amount of variables that can be selected for the estimating model. Moreover, since the number of completed smart schools is limited, there is little data. In this study, various artificial intelligence models were used to accurately predict the construction cost in the planning and design phase with limited variables and lack of performance data. A theoretical study on an artificial neural network and deep learning was carried out. As the artificial neural network has frequent problems of overfitting, it is found that there is a problem in practical application. In order to overcome the problem, this study suggests that the improved models of Deep Neural Network and Deep Belief Network are more effective in making accurate predictions. Deep Neural Network (DNN) and Deep Belief Network (DBN) models were constructed for the prediction of construction cost. Average Error Rate and Root Mean Square Error (RMSE) were calculated to compare the error and accuracy of those models. This study proposes a cost prediction model that can be used practically in the planning and design stages.

A study on the construction of the quality prediction model by artificial neural intelligence through integrated learning of CAE-based data and experimental data in the injection molding process (사출성형공정에서 CAE 기반 품질 데이터와 실험 데이터의 통합 학습을 통한 인공지능 품질 예측 모델 구축에 대한 연구)

  • Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.24-31
    • /
    • 2021
  • In this study, an artificial neural network model was constructed to convert CAE analysis data into similar experimental data. In the analysis and experiment, the injection molding data for 50 conditions were acquired through the design of experiment and random selection method. The injection molding conditions and the weight, height, and diameter of the product derived from CAE results were used as the input parameters for learning of the convert model. Also the product qualities of experimental results were used as the output parameters for learning of the convert model. The accuracy of the convert model showed RMSE values of 0.06g, 0.03mm, and 0.03mm in weight, height, and diameter, respectively. As the next step, additional randomly selected conditions were created and CAE analysis was performed. Then, the additional CAE analysis data were converted to similar experimental data through the conversion model. An artificial neural network model was constructed to predict the quality of injection molded product by using converted similar experimental data and injection molding experiment data. The injection molding conditions were used as input parameters for learning of the predicted model and weight, height, and diameter of the product were used as output parameters for learning. As a result of evaluating the performance of the prediction model, the predicted weight, height, and diameter showed RMSE values of 0.11g, 0.03mm, and 0.05mm and in terms of quality criteria of the target product, all of them showed accurate results satisfying the criteria range.

Comparison of Deep Learning Models for Judging Business Card Image Rotation (명함 이미지 회전 판단을 위한 딥러닝 모델 비교)

  • Ji-Hoon, Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.34-40
    • /
    • 2023
  • A smart business card printing system that automatically prints business cards requested by customers online is being activated. What matters is that the business card submitted by the customer to the system may be abnormal. This paper deals with the problem of determining whether the image of a business card has been abnormally rotated by adopting artificial intelligence technology. It is assumed that the business card rotates 0 degrees, 90 degrees, 180 degrees, and 270 degrees. Experiments were conducted by applying existing VGG, ResNet, and DenseNet artificial neural networks without designing special artificial neural networks, and they were able to distinguish image rotation with an accuracy of about 97%. DenseNet161 showed 97.9% accuracy and ResNet34 also showed 97.2% precision. This illustrates that if the problem is simple, it can produce sufficiently good results even if the neural network is not a complex one.

An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems (비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형)

  • Lee, Hyeon-Uk;Kim, Ji-Hun;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2012
  • These days, the malicious attacks and hacks on the networked systems are dramatically increasing, and the patterns of them are changing rapidly. Consequently, it becomes more important to appropriately handle these malicious attacks and hacks, and there exist sufficient interests and demand in effective network security systems just like intrusion detection systems. Intrusion detection systems are the network security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. Conventional intrusion detection systems have generally been designed using the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. However, they cannot handle new or unknown patterns of the network attacks, although they perform very well under the normal situation. As a result, recent studies on intrusion detection systems use artificial intelligence techniques, which can proactively respond to the unknown threats. For a long time, researchers have adopted and tested various kinds of artificial intelligence techniques such as artificial neural networks, decision trees, and support vector machines to detect intrusions on the network. However, most of them have just applied these techniques singularly, even though combining the techniques may lead to better detection. With this reason, we propose a new integrated model for intrusion detection. Our model is designed to combine prediction results of four different binary classification models-logistic regression (LOGIT), decision trees (DT), artificial neural networks (ANN), and support vector machines (SVM), which may be complementary to each other. As a tool for finding optimal combining weights, genetic algorithms (GA) are used. Our proposed model is designed to be built in two steps. At the first step, the optimal integration model whose prediction error (i.e. erroneous classification rate) is the least is generated. After that, in the second step, it explores the optimal classification threshold for determining intrusions, which minimizes the total misclassification cost. To calculate the total misclassification cost of intrusion detection system, we need to understand its asymmetric error cost scheme. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, total misclassification cost is more affected by FNE rather than FPE. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 10,000 samples from them by using random sampling method. Also, we compared the results from our model with the results from single techniques to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell R4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on GA outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that the proposed model outperformed all the other comparative models in the total misclassification cost perspective. Consequently, it is expected that our study may contribute to build cost-effective intelligent intrusion detection systems.

Feasibility of Deep Learning Algorithms for Binary Classification Problems (이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가)

  • Kim, Kitae;Lee, Bomi;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.95-108
    • /
    • 2017
  • Recently, AlphaGo which is Bakuk (Go) artificial intelligence program by Google DeepMind, had a huge victory against Lee Sedol. Many people thought that machines would not be able to win a man in Go games because the number of paths to make a one move is more than the number of atoms in the universe unlike chess, but the result was the opposite to what people predicted. After the match, artificial intelligence technology was focused as a core technology of the fourth industrial revolution and attracted attentions from various application domains. Especially, deep learning technique have been attracted as a core artificial intelligence technology used in the AlphaGo algorithm. The deep learning technique is already being applied to many problems. Especially, it shows good performance in image recognition field. In addition, it shows good performance in high dimensional data area such as voice, image and natural language, which was difficult to get good performance using existing machine learning techniques. However, in contrast, it is difficult to find deep leaning researches on traditional business data and structured data analysis. In this study, we tried to find out whether the deep learning techniques have been studied so far can be used not only for the recognition of high dimensional data but also for the binary classification problem of traditional business data analysis such as customer churn analysis, marketing response prediction, and default prediction. And we compare the performance of the deep learning techniques with that of traditional artificial neural network models. The experimental data in the paper is the telemarketing response data of a bank in Portugal. It has input variables such as age, occupation, loan status, and the number of previous telemarketing and has a binary target variable that records whether the customer intends to open an account or not. In this study, to evaluate the possibility of utilization of deep learning algorithms and techniques in binary classification problem, we compared the performance of various models using CNN, LSTM algorithm and dropout, which are widely used algorithms and techniques in deep learning, with that of MLP models which is a traditional artificial neural network model. However, since all the network design alternatives can not be tested due to the nature of the artificial neural network, the experiment was conducted based on restricted settings on the number of hidden layers, the number of neurons in the hidden layer, the number of output data (filters), and the application conditions of the dropout technique. The F1 Score was used to evaluate the performance of models to show how well the models work to classify the interesting class instead of the overall accuracy. The detail methods for applying each deep learning technique in the experiment is as follows. The CNN algorithm is a method that reads adjacent values from a specific value and recognizes the features, but it does not matter how close the distance of each business data field is because each field is usually independent. In this experiment, we set the filter size of the CNN algorithm as the number of fields to learn the whole characteristics of the data at once, and added a hidden layer to make decision based on the additional features. For the model having two LSTM layers, the input direction of the second layer is put in reversed position with first layer in order to reduce the influence from the position of each field. In the case of the dropout technique, we set the neurons to disappear with a probability of 0.5 for each hidden layer. The experimental results show that the predicted model with the highest F1 score was the CNN model using the dropout technique, and the next best model was the MLP model with two hidden layers using the dropout technique. In this study, we were able to get some findings as the experiment had proceeded. First, models using dropout techniques have a slightly more conservative prediction than those without dropout techniques, and it generally shows better performance in classification. Second, CNN models show better classification performance than MLP models. This is interesting because it has shown good performance in binary classification problems which it rarely have been applied to, as well as in the fields where it's effectiveness has been proven. Third, the LSTM algorithm seems to be unsuitable for binary classification problems because the training time is too long compared to the performance improvement. From these results, we can confirm that some of the deep learning algorithms can be applied to solve business binary classification problems.

Application of the ANFIS model in deflection prediction of concrete deep beam

  • Mohammadhassani, Mohammad;Nezamabadi-Pour, Hossein;Jumaat, MohdZamin;Jameel, Mohammed;Hakim, S.J.S.;Zargar, Majid
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.323-336
    • /
    • 2013
  • With the ongoing development in the computer science areas of artificial intelligence and computational intelligence, researchers are able to apply them successfully in the construction industry. Given the complexities indeep beam behaviour and the difficulties in accurate evaluation of its deflection, the current study has employed the Adaptive Network-based Fuzzy Inference System (ANFIS) as one of the modelling tools to predict deflection for high strength self compacting concrete (HSSCC) deep beams. In this study, about 3668measured data on eight HSSCC deep beams are considered. Effective input data and the corresponding deflection as output data were recorded at all loading stages up to failure load for all tested deep beams. The results of ANFIS modelling and the classical linear regression were compared and concluded that the ANFIS results are highly accurate, precise and satisfactory.

A Study on the Classification of Cyber Dysfunction and the Social Cognition Analysis in the Intelligent Information Society (지능정보사회의 사이버 역기능 분류와 사회적 인식 분석)

  • Lim, Gyoo Gun;Ahn, Jae Ik
    • Journal of Information Technology Services
    • /
    • v.19 no.1
    • /
    • pp.55-69
    • /
    • 2020
  • The Internet cyber space has become more important as it enters the intelligent information society of the 4th Industrial Revolution beyond the information age through the development of ICT, the expansion of personalized services through mobile and SNS, the development of IoT, big data, and artificial intelligence. The Internet has formed a new paradigm in human civilization, but it has focused only on the efficiency of its functions. Therefore, various side effects such as information divide, cyber terrorism, cyber violence, hacking, and personal information leakage are emerging. In this situation, facing the intelligent information society can lead to an uncontrollable chaos. Therefore, this study classifies the cyber dysfunction of intelligent information society and analyzes social cognition, suggests cyber dysfunction standard of intelligent information society, and examines the seriousness of dysfunction, and suggests technical research directions for future technologies and services. The dysfunctional classification of the intelligent information society was classified into five areas of cyber crime and terrorism, infringement of rights, intelligent information usage culture, intelligent information reliability, and social problems by FGI methodology. Based on the classification, the social perception of current and future cyber dysfunction severity was surveyed and it showed female is more sensitive than male about the dysfunction. A GAP analysis confirmed social awareness that the future society would be more serious about AI and cyber crime

Development of a DAI-Based Earthwork System (분산인공지능 기반의 토공 시스템 개발)

  • Kim Sung-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.180-187
    • /
    • 2002
  • Recently, there has been an increase in the demand to enhance the intelligence of construction equipment and systems. Especially for semiautonomous and autonomous systems that have great potential for impact on the construction industry, artificial intelligence approaches are required to generate instructions and plans necessary to perform tasks in dynamically changing environments on their own. The framework for an intelligent earthwork system (IES) is suggested in this paper. It generates a plan automatically for construction equipment and provides a means of cooperation between construction equipment seamlessly. This paper describes the system architecture, control strategy, task planning method, and resource allocation method for IES.

  • PDF

A GA-based Rule Extraction for Bankruptcy Prediction Modeling (유전자 알고리즘을 활용한 부실예측모형의 구축)

  • Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.83-93
    • /
    • 2001
  • Prediction of corporate failure using past financial data is well-documented topic. Early studies of bankruptcy prediction used statistical techniques such as multiple discriminant analysis, logit and probit. Recently, however, numerous studies have demonstrated that artificial intelligence such as neural networks (NNs) can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. Although numerous theoretical and experimental studies reported the usefulness or neural networks in classification studies, there exists a major drawback in building and using the model. That is, the user can not readily comprehend the final rules that the neural network models acquire. We propose a genetic algorithms (GAs) approach in this study and illustrate how GAs can be applied to corporate failure prediction modeling. An advantage of GAs approach offers is that it is capable of extracting rules that are easy to understand for users like expert systems. The preliminary results show that rule extraction approach using GAs for bankruptcy prediction modeling is promising.

  • PDF

A Study on Advertising Future Development Roadmap in the Fourth Industrial Revolution Era

  • Ahn, Jong Bae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.66-76
    • /
    • 2020
  • We The 4th industrial revolution, the core characteristics of super-intelligence, hyper-connective, and ultrareality, has been actualized. New technologies such as artificial intelligence, big data, the Internet of Things, and high-tech video have begun to be applied to media and advertising. With the introduction of new technologies in the advertising field, innovative changes in advertising types, advertising effects, advertising methods, and advertising contents are expected. Accordingly, We intends to design a future advertising roadmap development by predicting how future advertising will change and develop through future technologies in the 4th industrial revolution era. To design the roadmap, this study analyzes changes in advertising technology, consumer, and media as changes in the advertising environment in the 4th industrial revolution era, and identifies the core changing trends, advertising factors in future advertising through the Delphi Survey on experts in advertising and future fields. We identifies how the future advertising technology, types, media, effects, and fields are developed by the changes of future advertising environments, including technology, consumers, and media in the 4th industrial revolution era. Hence it is expected to help the advertising industry and experts to prepare for future changes.