• Title/Summary/Keyword: Artificial Neural Networks

Search Result 1,271, Processing Time 0.032 seconds

Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars

  • Asteris, Panagiotis G.;Apostolopoulou, Maria;Skentou, Athanasia D.;Moropoulou, Antonia
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.329-345
    • /
    • 2019
  • Despite the extensive use of mortar materials in constructions over the last decades, there is not yet a robust quantitative method, available in the literature, which can reliably predict mortar strength based on its mix components. This limitation is due to the highly nonlinear relation between the mortar's compressive strength and the mixed components. In this paper, the application of artificial neural networks for predicting the compressive strength of mortars has been investigated. Specifically, surrogate models (such as artificial neural network models) have been used for the prediction of the compressive strength of mortars (based on experimental data available in the literature). Furthermore, compressive strength maps are presented for the first time, aiming to facilitate mortar mix design. The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of mortars in a reliable and robust manner.

Performance Comparison of Guitar Chords Classification Systems Based on Artificial Neural Network (인공신경망 기반의 기타 코드 분류 시스템 성능 비교)

  • Park, Sun Bae;Yoo, Do-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.3
    • /
    • pp.391-399
    • /
    • 2018
  • In this paper, we construct and compare various guitar chord classification systems using perceptron neural network and convolutional neural network without pre-processing other than Fourier transform to identify the optimal chord classification system. Conventional guitar chord classification schemes use, for better feature extraction, computationally demanding pre-processing techniques such as stochastic analysis employing a hidden markov model or an acoustic data filtering and hence are burdensome for real-time chord classifications. For this reason, we construct various perceptron neural networks and convolutional neural networks that use only Fourier tranform for data pre-processing and compare them with dataset obtained by playing an electric guitar. According to our comparison, convolutional neural networks provide optimal performance considering both chord classification acurracy and fast processing time. In particular, convolutional neural networks exhibit robust performance even when only small fraction of low frequency components of the data are used.

A Comparison of Artificial Neural Networks and Statistical Pattern Recognition Methods for Rotation Machine Condition Classification (회전기계 고장 진단에 적용한 인공 신경회로망과 통계적 패턴 인식 기법의 비교 연구)

  • Kim, Chang-Gu;Park, Kwang-Ho;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.119-125
    • /
    • 1999
  • This paper gives an overview of the various approaches to designing statistical pattern recognition scheme based on Bayes discrimination rule and the artificial neural networks for rotating machine condition classification. Concerning to Bayes discrimination rule, this paper contains the linear discrimination rule applied to classification into several multivariate normal distributions with common covariance matrices, the quadratic discrimination rule under different covariance matrices. Also we discribes k-nearest neighbor method to directly estimate a posterior probability of each class. Five features are extracted in time domain vibration signals. Employing these five features, statistical pattern classifier and neural networks have been established to detect defects on rotating machine. Four different cases of rotation machine were observed. The effects of k number and neural networks structures on monitoring performance have also been investigated. For the comparison of diagnosis performance of these two method, their recognition success rates are calculated form the test data. The result of experiment which classifies the rotating machine conditions using each method presents that the neural networks shows the highest recognition rate.

  • PDF

A Study on Application of Reinforcement Learning Algorithm Using Pixel Data (픽셀 데이터를 이용한 강화 학습 알고리즘 적용에 관한 연구)

  • Moon, Saemaro;Choi, Yonglak
    • Journal of Information Technology Services
    • /
    • v.15 no.4
    • /
    • pp.85-95
    • /
    • 2016
  • Recently, deep learning and machine learning have attracted considerable attention and many supporting frameworks appeared. In artificial intelligence field, a large body of research is underway to apply the relevant knowledge for complex problem-solving, necessitating the application of various learning algorithms and training methods to artificial intelligence systems. In addition, there is a dearth of performance evaluation of decision making agents. The decision making agent that can find optimal solutions by using reinforcement learning methods designed through this research can collect raw pixel data observed from dynamic environments and make decisions by itself based on the data. The decision making agent uses convolutional neural networks to classify situations it confronts, and the data observed from the environment undergoes preprocessing before being used. This research represents how the convolutional neural networks and the decision making agent are configured, analyzes learning performance through a value-based algorithm and a policy-based algorithm : a Deep Q-Networks and a Policy Gradient, sets forth their differences and demonstrates how the convolutional neural networks affect entire learning performance when using pixel data. This research is expected to contribute to the improvement of artificial intelligence systems which can efficiently find optimal solutions by using features extracted from raw pixel data.

Optimization of Memristor Devices for Reservoir Computing (축적 컴퓨팅을 위한 멤리스터 소자의 최적화)

  • Kyeongwoo Park;HyeonJin Sim;HoBin Oh;Jonghwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Recently, artificial neural networks have been playing a crucial role and advancing across various fields. Artificial neural networks are typically categorized into feedforward neural networks and recurrent neural networks. However, feedforward neural networks are primarily used for processing static spatial patterns such as image recognition and object detection. They are not suitable for handling temporal signals. Recurrent neural networks, on the other hand, face the challenges of complex training procedures and requiring significant computational power. In this paper, we propose memristors suitable for an advanced form of recurrent neural networks called reservoir computing systems, utilizing a mask processor. Using the characteristic equations of Ti/TiOx/TaOy/Pt, Pt/TiOx/Pt, and Ag/ZnO-NW/Pt memristors, we generated current-voltage curves to verify their memristive behavior through the confirmation of hysteresis. Subsequently, we trained and inferred reservoir computing systems using these memristors with the NIST TI-46 database. Among these systems, the accuracy of the reservoir computing system based on Ti/TiOx/TaOy/Pt memristors reached 99%, confirming the Ti/TiOx/TaOy/Pt memristor structure's suitability for inferring speech recognition tasks.

  • PDF

STEPANOV ALMOST PERIODIC SOLUTIONS OF CLIFFORD-VALUED NEURAL NETWORKS

  • Lee, Hyun Mork
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.39-52
    • /
    • 2022
  • We introduce Clifford-valued neural networks with leakage delays. Furthermore, we study the uniqueness and existence of Clifford-valued Hopfield artificial neural networks having the Stepanov weighted pseudo almost periodic forcing terms on leakage delay terms. However the noncommutativity of the Clifford numbers' multiplication made our investigation diffcult, so our results are obtained by decomposing Clifford-valued neural networks into real-valued neural networks. Our analysis is based on the differential inequality techniques and the Banach contraction mapping principle.

Automatic Generation of a Configured Song with Hierarchical Artificial Neural Networks (계층적 인공신경망을 이용한 구성을 갖춘 곡의 자동생성)

  • Kim, Kyung-Hwan;Jung, Sung Hoon
    • Journal of Digital Contents Society
    • /
    • v.18 no.4
    • /
    • pp.641-647
    • /
    • 2017
  • In this paper, we propose a method to automatically generate a configured song with melodies composed of front/middle/last parts by using hierarchical artificial neural networks in automatic composition. In the first layer, an artificial neural network is used to learn an existing song or a random melody and outputs a song after performing rhythm post-processing. In the second layer, the melody created by the artificial neural network in the first layer is learned by three artificial neural networks of front/middle/last parts in the second layer in order to make a configured song. In the artificial neural network of the second layer, we applied a method to generate repeatability using measure identity in order to make song with repeatability and after that the song is completed after rhythm, chord, tonality post-processing. It was confirmed from experiments that our proposed method produced configured songs well.

A Structure of Spiking Neural Networks(SNN) Compiler and a performance analysis of mapping algorithm (Spiking Neural Networks(SNN)를 위한 컴파일러 구조와 매핑 알고리즘 성능 분석)

  • Kim, Yongjoo;Kim, Taeho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.613-618
    • /
    • 2022
  • Research on artificial intelligence based on SNN (Spiking Neural Networks) is drawing attention as a next-generation artificial intelligence that can overcome the limitations of artificial intelligence based on DNN (Deep Neural Networks) that is currently popular. In this paper, we describe the structure of the SNN compiler, a system SW that generate code from SNN description for neuromorphic computing systems. We also introduce the algorithms used for compiler implementation and present experimental results on how the execution time varies in neuromorphic computing systems depending on the the mapping algorithm. The mapping algorithm proposed in the text showed a performance improvement of up to 3.96 times over a random mapping. The results of this study will allow SNNs to be applied in various neuromorphic hardware.

All Direction Approach Automatic Ship Berthing Controller Using ANN(Artificial Neural Networks) (인공신경망을 이용한 다방향 접근 시 선박 자동 접이안 제어기 연구)

  • Im, Nam-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.304-308
    • /
    • 2007
  • This paper deals with ANN(Artificial Neural Networks) and its application to automatic ship berthing. Due to the characteristic of ship's manoeuvre comparing with other moving objects on land, it has been known that the automatic control for ship's berthing cannot cope with various berthing situations such as various port shape and approaching directions. for these reasons. the study on automatic berthing using ANN usually have been carried out based on one port shape and predetermined approaching direction. In this paper, new algorithm with ANN controller was suggested to cope with these problems. Under newly suggested algorithm, the controller can select appropriate weights on the link of neural networks according to various situations. so the ship can maintain stable berthing operation even in different situations. Numerical simulations are carried out with this control system to find its improvement.